Управление работой элементов системы водяного теплого пола

Схемы управления нагреваемым полом, приборы автоматики, принципы работы

Производители предлагают ряд устройств, которые позволяют управлять теплыми полами дистанционно или в автоматическом режиме. В том числе и программируя требуемую температуру, или подстраиваясь под состояние погоды. Но какое управление предпочесть, какая автоматика окажется полезней, комфортней?

Теплый пол без автоматики

Теплый пол может вообще не оснащаться автоматическим оборудованием. Чтобы он заработал достаточно включить циркуляционный насос, например, вставить вилку в розетку.

Настройки по температуре могут выполняться вручную. При этом вручную задается общая температура с помощью термоголовки смесительного узла. Затем, при необходимости, балансировочными кранами на коллекторе теплого пола настраивается поток (отдаваемая мощность) по каждому контуру.

При этом пользователи руководствуются субъективными ощущениями тепла в комнатах и степени нагрева полов, комнатными термометрами, а также термометрами, встроенными в подачу и обратку на коллекторе.

При настройке теплых полов, как вручную, так и с помощью дистанционного управления, необходимо учитывать большую тепловую инертность тяжелой стяжки. Поэтому настройки могут происходить постепенно в течении нескольких дней.

Обязательная защита в управлении

В цепи включения циркуляционного насоса теплого пола должно присутствовать реле тепловой защиты. Это температурное реле обычно размещается на подающем трубопроводе из смесительного узла на коллектор, и настраивается на размыкание цепи при достижении температуры +55 градусов.

Если термоголовка смесительного узла по каким-то причинам работает ошибочно и дает слишком высокую температуру на выходе, то указанное реле выключает насос, защищая стяжку.

Указанное реле может не устанавливаться если температурная защита осуществляется термоклапаном (термоголовкой) механического действия.

Еще одна механическая защита — байпас между гребенками подачи и обратки коллектора теплого пола. Байпас оборудуется встроенным дифференциальным клапаном. При закрытии (прикрытии) кранов на коллекторе значительно ограничивается расход жидкости через насос, возникают перегрузки, появляется шум жидкости. Разгрузить насос и снизить давление, стабилизировать работу, поможет этот байпас.

Также отдельные производители предлагают и модуль управления насосом теплого пола, который включает насос только тогда, когда открыт хотя бы один из сервоприводов на коллекторе.

Далее рассмотрим приборы и оборудование автоматики. С помощью следующих средств теплым полом можно управлять в дистанционном режиме или полностью автоматизировать его работу.

Комнатный термостат управляющий аппаратурой

Комнатный термостат предназначен для управления оборудованием обогреваемых водяных полов, которое осуществляется в 2-х позициях, — «да», «нет».

При достижении задаваемой температуры термостат либо замыкает, либо размыкает электрическую цепь. Это зависит от принятой производителем схемы управления.

Но чаще комнатный термостат управляет нормально закрытым сервоприводом. Т.е. при достижении заданного порога подается напряжение и сервопривод включается до снятия напряжения.

Обычно пару термостат-сервопривод приобретают от одного производителя, тогда вопроса согласования оборудования не возникает.

Комнатный термостат может размещаться в стандартной распределительной коробке электросети, заделанной в стену и подключается к скрытой проводке. Сам же термостат может быть разных модификаций, в т.ч. электронный или со встроенным механическим датчиком (обычно с большой погрешностью), с выносными датчиками встраиваемыми в стяжку теплого пола.

Пользователь управляет термостатом вращением ручки (настройка температуры), клавишами настройки, а также включения и выключения, прибор снабжается индикатором работы или табло с информацией.
Производитель прилагает и схему подключения термостата к другому оборудованию.

Хронотермостат

Хронотермостат — электронный программируемый прибор с датчиками температуры воздуха в комнате. В отличие от простого термостата снабжен программируемым процессором.

Этим прибором можно задавать температуру в помещении на некоторый период времени вперед, обычно на сутки или на неделю.
Как правило снабжен вшитыми настройками на режимы отопления «комфортный» и «эконом», а также защитой от замерзания теплоносителя.

Управляет, как и обычный термостат, сервоприводом, насосом, выдавая команды «да», «нет».

Термостатическая головка

Термостатическая головка управляет клапаном регулировки температуры смесительного узла, путем воздействия на его шток.
Головка устанавливается на клапане, снабжается выносным датчиком жидкостного типа, с которым соединяется гибкой медной капиллярной трубкой.

Модификации могут быть разные, датчик чаще снимает показания с обратного коллектора теплого пола. Диапазон измеряемых температур чаще в пределах 20 — 60 градусов. Могут настраиваться вручную вращением ручки или сервоприводом по командам термостата.
Как устроен смесительный узел

Сервоприводы

Конструкции могут быть разные, но в системе теплого пола для управления термоголовкой или настроечным вентилем, часто используется импульсный сервопривод. Приводится в движение расширением жидкости в сильфоне при ее нагреве встроенными нагревательным элементом. Рабочее напряжение 220 или 24 В.

Работает по сигналам (выполняет команды) термостатов, контроллеров, или отдельных встроенных датчиков.

Контроллер

Программируемое управляющее устройство. Может выполнять множество функций по обеспечению автоматизации управления теплым полом, в том числе:

  • измерение и индикация температуры воздуха в комнатах и теплоносителя;
  • обеспечение питания сервоприводов переменным напряжением 24 В и управление ими.

Но главной способностью контролера является обеспечение погодозависимого управления, — вычисление требуемой величины выходного сигнала управления в соответствии с показаниями датчика наружной температуры по заданному пользователем графику зависимости температуры теплоносителя от температуры наружного воздуха.

Читайте также:  Строительство дачных деревянных хозблоков

Впрочем, надобность подобной автоматики для теплого пола (установки контроллера) многими специалистами и пользователями с опытом ставится под сомнение. Насколько нужна погодозависимая автоматика, подробней об автоматизации отопления

А если надобности в подобном управлении нет, то и дорогой контроллер соответственно не нужен.

Схемы управления теплыми полами

Приведена типичная схема теплых полов с элементами автоматики — выносными термостатами расположенными в разных комнатах и сервоприводами установленными на балансировочных кранах коллектора.

При этом термостаты подключены к общему коммутационному устройству, сблокированному с контроллером (защитным) насоса.

Указан байпас с дифференциальным клапаном, который предохраняет насос от поломки, и защитное термореле

На следующих схемах показаны несколько обычных вариантов автоматизации теплых полов.

    Термостат, расположенный в комнате, управляет включением насоса теплых полов —

Как будет управляться теплый пол желательно решить заранее, чтобы провести необходимую скрытую проводку по комнатам до завершения строительства.

Управление люстрой по двум проводам — схема, видео, идеи

Как можно управлять люстрой (включая отдельные группы лампочек), если к ней проложено всего два провода (фаза и ноль). Возможные схемы управления светильником по двум проводам.

При подключении любого светильника для его работы нужны как минимум два провода – общий ноль и фаза. Если светильник подразумевает несколько ламп, возникает желание сделать включение лампочек отдельно по одной или по группам. В общем случае для этого используют сдвоенные выключатели или несколько одинарных, по одному на каждую группу. Для этого дополнительно прокладывается проводка, по фазе от каждого из выключателей к лампе. Однако иногда возникает ситуация, когда в комнате был светильник с одной лампочкой или люстра включалась целиком, а теперь вы захотели управлять группами источников света в новой люстре, при этом отделочные работы выполнены и нет желания штробить стены под прокладку отдельной фазы. В таком случае проложить дополнительные провода не получится. Тогда есть два варианта решения проблемы. Первый — использовать «умную» люстру, которая управляется с пульта, тогда не нужно изменять проводку, ведь вся коммутация происходит в блоке управления люстрой. Второй вариант — задействовать схему, при которой происходит управление люстрой по двум проводам. О второй способе мы как раз и расскажем далее.

Схемы подключения

Существует сразу несколько вариантов подключения люстры для управления по двум проводам. Во всех случаях нет необходимости штробить стены или портить потолок для прокладки нового кабеля.

Задействуем диоды

Первая идея заключается в использовании диодной схемы. Суть заключается в том, что несколько установленных параллельно выключателей включают лампы через диоды, перед лампочками также установлены диоды. Так как диод пропускает только одну полуволну синусоидального напряжения бытовой электросети (в данном случае), то и лампа включится та, перед которой включен диод в соответствующем направлении.

Недостаток этой схемы заключается в том, что на каждую осветительную группу подается лишь половина напряжения питания. Лампы накаливания в таком включении будут работать, а вот люминесцентные или светодиодные, если и включатся, то такое питание приведет к преждевременному их выходу из строя. Лампы накаливания будут мерцать с частотой питающей сети, для России это 50 Гц, это ведет к повышенной утомляемости людей находящихся в помещении, а также головным болям и общим недомоганиям. Такой свет нельзя использовать в жилых помещениях.

Еще одна «диодная» схема управления люстрой по двум проводам заключается во включении всех лампочек, но на разную мощность, это реализовано с помощью диода. При включении 1-й клавиши выключателя включается первая полуволна, при второй – полное напряжение. Её можно применять для питания ламп накаливания или диммируемых светодиодных ламп. При этом конденсаторы нужны для того, чтобы при нажатии одной из клавиш включались только первые три источника света, ведь ёмкость не пропускает постоянный ток (одна полуволна – это тоже постоянный ток, но пульсирующий). Ёмкость нужна порядка 1 мкФ и напряжением более 300 В. Диоды отечественные КД202 (ж, к, м, р), КД203, КД206, иностранные 1n4007 (можно выпаять из сгоревшей люминесцентной лампы или зарядного устройства).

Схема выглядит следующим образом:

Также рекомендуем просмотреть видео, на котором подробно рассказывается, как управлять люстрой по двум проводам, добавив в схему конденсатор:

Резюмируя реализацию возможности управление люстрой по двум проводам

Итак, резюмируя все вышеприведенное можно акцентировать внимание на двух вариантах. Это вариант 1, когда подключение максимально простое. Его стоит попробовать со светодиодными лампами, где есть встроенные конденсаторы, что несколько смягчит моргание.
Второй вариант, если вы чувствуете в себе силы, что сможете реализовать несложную радиоэлектрическую схему, это использование 4 случая. Вариант лишен каких-либо недостатков, не требует наладки и определенных алгоритмов по включению ламп люстры.

Читайте также:  Что лучше гель или порошок для стиральной машины, советы экспертов

Способы использования полупроводников в управлении освещением люстры

Наиболее распространенным методом является применение транзисторов в схемах подключения люстры по двум проводам. Электротехнические элементы долговечны, допускаются частые переключения. На выбор дается несколько видов управления.

Управление на базе счетчика

Для управления люстрой используются счетные импульсы. Первый сбрасывает счетчик, второй – приводит к последовательному включению лампочек. При каждом следующем щелчке выключателя вступает в действие или выключается новая группа источников света. Чтобы выполнить сброс импульсов, потребуется пауза на 15-20 секунд.

Сдвиговый регистр

В самом названии заложен принцип действия схемы. Попадающий на ее начало импульс передается по цепи на нужные выходы. В дальнейшем принцип работы идентичен варианту, описанному выше.

Тиристор

Для питания схемы управления используется диодный мост, выполняющий функции выпрямителя тока. При активации выключателя загорается первая лампочка в цепи. Происходит постепенная зарядка конденсаторов, при этом дополнительный мост удерживает транзистор и тиристор в закрытом положении. При смене положения выключателя конденсатор перезаряжается.

Микроконтролирование люстры

Для реализации схемы на микроконтроллере требуется небольшой процессор с программным обеспечением. С его помощью можно выбрать любой принцип работы с различными вариациями дополнительных функций. В качестве основы берется аналогичная схема.

Самый простой вариант

Мы уже упомянули о люстрах с пультом. Их стоимость на момент написания статьи начинается от 1500 рублей. У них есть преимущество для тех, кто не хочет собирать сложных схем – вам нужно только подключить питание к люстре. Остальные параметры устанавливаются с пульта.

Ассортимент таких устройств достаточно широкий и позволяет реализовать любые дизайнерские идеи в вашей квартире, в том числе есть музыкальные модели и модели, управляемые смартфоном.

Обзор подобной люстры предоставлена на видео:

Теперь вы знаете, как организовать управление люстрой по двум проводам, если нет возможности проложить дополнительную проводку от выключателя. Надеемся, предоставленная информация была для вас полезной и и вы смогли выбрать для себя наиболее подходящий способ решения проблемы!

Материалы по теме:

  • Дистанционное управление освещением
  • Как подключить люстру на пульте
  • Как сделать хлопковый выключатель своими руками


Схема на терморезисторе и реле

Другой вариант подключения и управления светильником подразумевает наличие в схеме реле и терморезистора. Когда происходит включение, то напряжение подается на первую часть схемы, и подключенные к ней лампы зажигаются. Еще одна группа ламп питается обычным замкнутым реле. При подаче питания контакты размыкаются.

Параллельно реле подключаются резистор и терморезистор. Когда ток проходит через второй элемент, то он постепенно нагревается. Повышение температуры приводит к снижению сопротивления.

Ток включения всегда больше тока удержания. Поэтому при уменьшенном сопротивлении терморезистора ток пройдет дальше, а на реле питания будет достаточно для того, чтобы удерживать его во включенном состоянии. Для включения всех ламп нужно выключить и включить схему повторно и без паузы. В таком случае терморезистор останется нагретым, ток продолжит следовать через него, а тока на катушке будет недостаточно для ее размыкания. Чтобы вновь включить первую группу лампочек, придется отключить свет, подождать 20-30 секунд и нажать на выключатель повторно.

Управление люстрой по двум проводам: схема, видео, идеи

Третья схема управления светильником по двум проводам на терморезисторе и реле. При включении выключателя напряжение подаётся на схему и зажигаются лампы HL4-HL6. HL1-HL3 запитаны через нормально-замкнутые контакты реле (К1 – его катушка), при подаче питания они размыкаются. Параллельно катушке подключены: задающий резистор R1 и терморезистор R2. Протекание тока через R2 вызывает его нагрев. С повышением температуры его сопротивление падает (NTC или отрицательный температурный коэффициент).

У реле есть некий характерный гистерезис, это значит, что ток включения больший, чем ток удержания. Это значит, что при сниженном сопротивлении R2 ток продолжит протекать через него, но катушка остается запитанной достаточно для удержания реле во включенном состоянии. Чтобы включить все лампы, нужно быстро перевключить выключатель, тогда резистор не успеет остыть и ток пойдёт через него, тока через катушку будет недостаточно для размыкания контактов. Чтобы включить половину лампочек повторно, нужно выключить свет, подождать с половину минуты, чтобы терморезистор остыл и его сопротивление восстановилось, и включить заново.

  • Реле с сопротивлением обмотки около 300 ом, Uсрабатывания 7В, Uотпускания – 3В.
  • R2 – три терморезистора СТ3-17, соединённых параллельно.
  • R1 – МЛТ-0,25, в диапазоне десятков Ом, подобрать для того, что бы реле срабатывало и не срабатывало в зависимости от выбранного режима, который описан выше.
  • Диодный мост – любой рассчитанный на сетевой напряжение, например КЦ407А.
  • C1 – 50 мКф на 16 В.

Провода на люстре

Подключить люстру с 2 проводами просто: один из них прикручиваете на фазу, другой на ноль. Какой-куда — не важно. Если фазы на потолке две, а выключатель на стене двухклавишный, есть варианты:

  • Скрутить фазы между собой, и к ним подсоединить один из проводов от люстры. В этом случае для выключения придется переводить в положение «выключено» обе клавиши, а включаться освещение будет от любой из них.
  • Соединить провод с одной из фаз, вторую заизолировать. Тогда рабочей будет только одна клавиша. Вторая — пустовать.
Читайте также:  Средство для мытья окон: 25 лучших народных рецептов и препаратов бытовой химии

Как подключить люстру, если на ней есть только два провода

На многорожковых люстрах проводов точно больше двух. С назначением желто-зеленого мы определились. Это — заземление. Если такой же провод есть на потолке, соединяете с ним. С остальными тоже нужно разбираться.

Люстра с 3 проводами подключается ненамного сложнее. Если один из них — заземление (желто-зеленого цвета) его можно:

  • игнорировать — если провода такого цвета (или похожего) нет на потолке,
  • подключить к такому же по цвету.

Собственно, других вариантов нет. Три провода в основном у светильников с одной лампочкой. С двумя — это устаревшая конструкция, с тремя — более современная, соответствующая актуальным рекомендациям.

Подключение к двойному выключателю

Подключают пяти-, четырех-, трехрожковую люстру к двухклавишному выключателю по одному принципу. От каждого из рожков идет два разноцветных провода. Чаще всего это синие и коричневые провода, но встречаются и другие вариации. Для подсоединения к двойному выключателю все их нужно разбить на три группы: две фазы и один ноль.

Подключение пятирожковой люстры к двойному (двухклавишному) выключателю

Сначала все синие провода объединяют между собой и хорошенько скручивают. Это — ноль. В принципе, можно взять провода другого цвета — для осветительных приборов это неважно. Но по стандарту синим цветом обозначают именно «ноль». Важно только, чтобы в скрутку не попали проводники, окрашенные в другой цвет. На фото ниже вы видите, что все проводники синего цвета объединены в одну группу. Это и есть «ноль».

Перед тем как подключить люстру, проводники группируют

Теперь оставшиеся разбиваете на две группы. Разбивка произвольная. Одна группа лампочек будет включаться от одной клавиши, вторая — от другой. В пятирожковой люстре объединяют обычно 2+3, но можно и 1+4. В четырехрожковой тоже два варианта — 2+2 или 1+3. А вот с тремя лампочками без вариантов: 1+2. Разделенные провода скручиваете между собой. Получили две группы, которые подключите к «фазам» на потолке.

Как подсоединить люстру к одинарному выключателю

Если проводов на потолке только два, а на люстре — много, но только двух цветов, все просто. Все проводники одного цвета скручиваете оголенными частями и соединяете с одним из проводов на потолке (неважно с каким). Собираете в один жгут все проводники второго цвета и присоединяете ко второму потолочному. Схема подключения люстры в этом случае показана на рисунке ниже.

Схема подключения люстры к одноклавишному выключателю

При таком включении одновременно загораться будут все лампочки.

Используем счетчик

Еще одна схема построена на логических элементах. Суть идеи заключается в том, что вы подаете импульсы и на его выходе попеременно появляются логические единицы. Они используются для включения полупроводниковых ключей, например транзисторов.

Переключение групп ламп происходит при быстром переключении выключателя (вкл./выкл.), так на вход счетчика С поступают тактовые импульсы и на выходе появляются логические единицы. Алгоритм работы:

  1. EL1 & EL
  2. EL1 & EL3 & EL
  3. EL1 & EL2 & EL3 & EL

Сброс счетчика происходит при подаче сигнала на вход R. Для этого нужно выключить SA1 на 15 секунд.

  • Счетные импульсы формирует DD3.
  • Первое включение, на выходе DD3 сформирован логический ноль, удерживается от C2.
  • Короткое переключение разряжает конденсатор и на выходе DD3 появляется логическая единица. Происходит переключение элемента DD2.1 по переднему фронту на счетном входе. И так при каждом кратковременном размыкании SA2.

Правила соединения проводов

При работе с электричеством мелочей не бывает. Потому соединение проводов в люстре делаем по всем правилам. При объединении в одну группу, их недостаточно просто скрутить и накрутить защитный колпачок.

Cоединить провода от люстры и выключателя нужно в клеммной коробке

Такая скрутка рано или поздно окислится и начнет греться. Очень желательно такие соединения пропаять. Если вы умеете обращаться с паяльником и оловом, обязательно это сделайте. Так будет гарантирован нормальный контакт и греться соединение не будет.

Теперь о том, как соединять провода от люстры с проводами от выключателя (которые на потолке). По последним правилам скрутки недопустимы. Необходимо использовать клеммные коробки. Большинство современных люстр укомплектованы ими. Если нет — купите в любом строительном магазине или торгующем осветительными приборами.

Читайте также:  ТОП-10 лучших и эффективных средств для чистки унитаза

При использовании такой клеммной коробки возникает проблема: скрутка из большого числа проводов в отверстие просто не лезет. Выход: к соединению припаять проводник (медный, одножильный или многожильный, сечением не менее 0,5 мм2). Это соединение хорошо заизолировать, и в клеммную коробку вставлять свободный конец припаянного проводника (длинный не нужен — см 10 более чем достаточно).

Вставив в клеммник все провода от люстры и затянув винты, всю конструкцию поднимают под потолок. Там ее предварительно крепят, после чего в клеммник в нужном порядке подключают провода. При этом важно один напротив другого установить «ноли». Фазы к фазам подсоединяются в произвольном порядке.

Правильное соединение проводов в распределительной коробке описано тут.

Как разделяют провода на люстре, как присоединяют проводник и люстру к клеммнику — все это есть в видео.

Обзор схем для управления люстрой по двум проводам

Для успешного подключения любого осветительного прибора требуется не менее двух проводов – нулевой и фазный. Если будет использоваться светильник на несколько лампочек, то нередко возникает желание настроить разные режимы работы (со свечением одного, двух или всех источников света).

В этих целях пригодятся парные выключатели или несколько отдельных устройств, подключенных к разным группам ламп. В таком случае требуется дополнительная проводка и коммутация отдельной фазы к каждому выключателю. Все это актуально на этапе проектирования, но если в квартире уже сделан ремонт и появилась необходимость заменить обычный светильник на многофункциональный, то придется действовать одним из двух методов.

Первый вариант – купить «умную» люстру с пультом дистанционного управления. В ее блок-схеме уже заложена поддержка разных режимов. Второй вариант – воспользоваться определенными схемами, обеспечивающими управление люстрой по двум проводам.

Схемы подключения

Существует сразу несколько вариантов подключения люстры для управления по двум проводам. Во всех случаях нет необходимости штробить стены или портить потолок для прокладки нового кабеля.

Релейная система подключения

Такой вариант прост в реализации, но его существенным недостатком является быстрый износ деталей. После тысячекратных включений и выключений света схема выйдет из строя. Элементы спрятаны под декоративным колпачком, расположенным у потолка. Приблизительно раз в год придется «потрошить» содержимое и заменять перегоревшие детали.

На картинке ниже вы можете увидеть схему релейного подключения и управления осветительным прибором:

Главные элементы здесь — два терморезистора, один конденсатор, реле К1 и диодный мост.

Когда включается лампа, то холодный терморезистор R2 увеличивает свое сопротивление. Напряжение поступает на реле K1, что приводит к размыканию контактов и включению трех ламп в цепи. Спустя пару секунд происходит нагрев терморезистора, благодаря чему сопротивление в цепи понижается и стабилизируется.

При выключении питания на полсекунды терморезистор не успевает остыть, контакты остаются замкнутыми. Загораются все шесть имеющихся ламп. Чтобы заставить светильник работать в первом режиме (три лампы), потребуется отключить напряжение на несколько секунд. Как видите, данный вариант недоработанный, но все же может быть реализован в домашних условиях.

Способы использования полупроводников в управлении освещением люстры

Наиболее распространенным методом является применение транзисторов в схемах подключения люстры по двум проводам. Электротехнические элементы долговечны, допускаются частые переключения. На выбор дается несколько видов управления.

Управление на базе счетчика

Для управления люстрой используются счетные импульсы. Первый сбрасывает счетчик, второй – приводит к последовательному включению лампочек. При каждом следующем щелчке выключателя вступает в действие или выключается новая группа источников света. Чтобы выполнить сброс импульсов, потребуется пауза на 15-20 секунд.

Сдвиговый регистр

В самом названии заложен принцип действия схемы. Попадающий на ее начало импульс передается по цепи на нужные выходы. В дальнейшем принцип работы идентичен варианту, описанному выше.

Тиристор

Для питания схемы управления используется диодный мост, выполняющий функции выпрямителя тока. При активации выключателя загорается первая лампочка в цепи. Происходит постепенная зарядка конденсаторов, при этом дополнительный мост удерживает транзистор и тиристор в закрытом положении. При смене положения выключателя конденсатор перезаряжается.

Микроконтролирование люстры

Для реализации схемы на микроконтроллере требуется небольшой процессор с программным обеспечением. С его помощью можно выбрать любой принцип работы с различными вариациями дополнительных функций. В качестве основы берется аналогичная схема.

Задействуем диоды

Другая идея управления люстрой по двум кабелям связана с применением диодной схемы. Выполняется подключение нескольких выключателей, соединенных параллельно друг другу. Для включения лампочек они используют диоды, которые размещаются и перед выключателями, и перед лампами. Полупроводник способен пропускать всего лишь одну полуволну синусоидального напряжения в промышленной сети. Поэтому происходит включение того источника света, который расположен непосредственно перед диодом.

Недостатком такого варианта является то, что для каждой группы светильников выполняется подача половины напряжения от сети питания. Это уместно для обычных ламп накаливания, но не подходит для светодиодных и люминесцентных источников света. Даже если они включатся, то в дальнейшем намного быстрее выйдут из строя.

Что касается ламп накаливания, они будут мерцать с частотой 50 Гц (аналогичная частота в бытовой электросети). Это негативно сказывается на самочувствии находящегося в помещении человека, поэтому в жилых домах такой свет использовать не рекомендуется.

При помощи диода можно обеспечить включение всех лампочек с разной мощностью. При щелчке по первому выключателю подается первая полуволна, по второму – все напряжение. Вариант уместен для ламп накаливания и светодиодных источников с диммерами. Дополнительно схема должна включать конденсаторы, обеспечивающие включение первой группы источников. Достаточно емкости на 1 мкФ и напряжения свыше 300 В. В качестве диодов можно взять отечественные КД202, КД203, КД206 или зарубежные 1n4007.

Читайте также:  Установка межкомнатных дверей своими руками: инструкция с видео

Схема на терморезисторе и реле

Другой вариант подключения и управления светильником подразумевает наличие в схеме реле и терморезистора. Когда происходит включение, то напряжение подается на первую часть схемы, и подключенные к ней лампы зажигаются. Еще одна группа ламп питается обычным замкнутым реле. При подаче питания контакты размыкаются.

Параллельно реле подключаются резистор и терморезистор. Когда ток проходит через второй элемент, то он постепенно нагревается. Повышение температуры приводит к снижению сопротивления.

Ток включения всегда больше тока удержания. Поэтому при уменьшенном сопротивлении терморезистора ток пройдет дальше, а на реле питания будет достаточно для того, чтобы удерживать его во включенном состоянии. Для включения всех ламп нужно выключить и включить схему повторно и без паузы. В таком случае терморезистор останется нагретым, ток продолжит следовать через него, а тока на катушке будет недостаточно для ее размыкания. Чтобы вновь включить первую группу лампочек, придется отключить свет, подождать 20-30 секунд и нажать на выключатель повторно.

Используем счетчик

Для реализации данной схемы нужно задействовать несколько логических элементов. При подаче импульсов на выходе возникают логические единицы и нули. Они необходимы для активации полупроводниковых транзисторов (или других подобных элементов).

Ниже можно ознакомиться с функциональной схемой:

Чтобы отключить первую группу и включить другую, следует быстро щелкнуть выключателем.

Алгоритм действия следующий:

  1. EL1 EL.
  2. EL1 EL3 EL.
  3. EL1 EL2 EL3.

Когда питающий сигнал попадает на вход R, то выполняется сброс счетчика. Чтобы это произошло, следует отключить SA1 на 15-20 секунд. Для формирования счетных импульсов используется элемент DD3.

Как видно, существует огромное количество различных схем для коммутации люстры, работающей от нулевого и фазного проводов. Выбирать тот или иной вариант следует в зависимости от знаний электротехники, опыта работы и наличия комплектующих. Чем дешевле схема подключения, тем ниже ее долговечность и функциональность.

Подключение люстры своими руками

Несложная, казалось бы, операция — установка новой люстры — незнакомого с электрикой человека может поставить в тупик: куча проводов и непонятно, что и с чем соединять. Как подключить люстру с разным количеством рожков (и проводов) к выключателю и будем обсуждать.

Подготовка: прозвонка и определение фаз на потолке

Тем, кто хоть немного значком с электросетями это не понадобится, остальным будет полезно. Человеку, не имеющему постоянно дела с электричеством ориентироваться бывает сложно. Чтобы не путаться, расскажем все по порядку: как найти в проводах на потолке фазу (или фазы) и ноль, что делать с заземлением. А потом, как целую кучу проводов на люстре, соединить с теми, что торчат наверху. В результате подключение люстры своими руками будет для вас простой задачей.

Провод заземления

Если проводка уже сделана, на потолке торчат два, три или четыре провода. Один из них — точно «ноль», остальные — фаза, еще может быть заземление.

Провод заземления есть в домах новой постройки или недавно отреставрированных

Провод заземления есть далеко не всегда, только в домах новой постройки или после капитального ремонта с заменой электропроводки. Согласно стандарту он имеет желто-зеленый цвет и подключается к такому же проводу на люстре. Если на вашей люстре его нет, оголенный провод тщательно изолируем и оставляем в таком виде. Оставить его незаизолированным нельзя — случайно можете закоротить.

Ищем фазы и ноль

С остальными проводами нужно разбираться: где «фаза» а где «ноль». В домах старой постройки все провода обычно одного цвета. Чаще всего — черного. В новостройках могут быть черные и синие, или коричневые и синие. Иногда присутствует красный. Чтобы не гадать по цветам, проще их прозвонить.

Если на потолке у вас три провода, а на стене двухклавишный выключатель, у вас должно быть две «фазы» — на каждую из клавиш и один «ноль» — общий провод. Прозванивать можно мультиметром (тестером) или индикаторной отверткой (это специальная отвертка с лампочкой, которая загорается при наличии напряжения). При работе перевести клавишу выключателя в положение «включено» (входной автомат на щитке тоже включен). После прозвонки, клавиши выключателя переведите в положение «выключено». Если есть возможность, лучше вырубить и автомат на щитке и подключать люстру с выключенным питанием.

Читайте также:  Чем можно оттереть с обоев следы от ручки: эффективные способы

Прозвонка проводов на потолке темтером

Как прозвонить и определить провода тестером показано на фото. Выставляете переключатель в положение «вольты», выбираете шкалу (больше 220 В). Попеременно касаетесь щупами пар проводов (щупы, держите за ручки, к оголенным проводникам не прикасайтесь). Две фазы между собой не «звонятся» — на индикаторе никаких изменений не будет. Если вы нашли такую пару, скорее всего, — это две фазы. Третий провод, скорее всего, «ноль». Теперь каждую из предполагаемых фаз соединяйте щупами с нулевым. На индикаторе должно быть 220 В. Вы нашли ноль — в международной спецификации он обозначается буквой N — и две фазы — обозначаются L. Если все провода одного цвета как-то обозначьте их: краской, цветным маркером, куском липкой ленты. Фазы — одним цветом, ноль — другим.

Работать индикаторной отверткой проще: просто прикасаетесь ее концом к оголенному проводнику. Светится — фаза, нет — ноль. Очень просто.

Использование индикаторной отвертки для поиска фазы

Если проводов торчит только два, то один из них — фаза, другой — ноль. При этом на выключателе одна клавиша. Других вариантов нет.

Провода на люстре

Подключить люстру с 2 проводами просто: один из них прикручиваете на фазу, другой на ноль. Какой-куда — не важно. Если фазы на потолке две, а выключатель на стене двухклавишный, есть варианты:

  • Скрутить фазы между собой, и к ним подсоединить один из проводов от люстры. В этом случае для выключения придется переводить в положение «выключено» обе клавиши, а включаться освещение будет от любой из них.
  • Соединить провод с одной из фаз, вторую заизолировать. Тогда рабочей будет только одна клавиша. Вторая — пустовать.

Как подключить люстру, если на ней есть только два провода? К таким же проводам на потолке в произвольном порядке

На многорожковых люстрах проводов точно больше двух. С назначением желто-зеленого мы определились. Это — заземление. Если такой же провод есть на потолке, соединяете с ним. С остальными тоже нужно разбираться.

Люстра с 3 проводами подключается ненамного сложнее. Если один из них — заземление (желто-зеленого цвета) его можно:

  • игнорировать — если провода такого цвета (или похожего) нет на потолке,
  • подключить к такому же по цвету.

Собственно, других вариантов нет. Три провода в основном у светильников с одной лампочкой. С двумя — это устаревшая конструкция, с тремя — более современная, соответствующая актуальным рекомендациям.

Подключение к двойному выключателю

Подключают пяти-, четырех-, трехрожковую люстру к двухклавишному выключателю по одному принципу. От каждого из рожков идет два разноцветных провода. Чаще всего это синие и коричневые провода, но встречаются и другие вариации. Для подсоединения к двойному выключателю все их нужно разбить на три группы: две фазы и один ноль.

Сначала все синие провода объединяют между собой и хорошенько скручивают. Это — ноль. В принципе, можно взять провода другого цвета — для осветительных приборов это неважно. Но по стандарту синим цветом обозначают именно «ноль». Важно только, чтобы в скрутку не попали проводники, окрашенные в другой цвет. На фото ниже вы видите, что все проводники синего цвета объединены в одну группу. Это и есть «ноль».

Перед тем как подключить люстру, проводники группируют

Теперь оставшиеся разбиваете на две группы. Разбивка произвольная. Одна группа лампочек будет включаться от одной клавиши, вторая — от другой. В пятирожковой люстре объединяют обычно 2+3, но можно и 1+4. В четырехрожковой тоже два варианта — 2+2 или 1+3. А вот с тремя лампочками без вариантов: 1+2. Разделенные провода скручиваете между собой. Получили две группы, которые подключите к «фазам» на потолке.

Как подсоединить люстру к одинарному выключателю

Если проводов на потолке только два, а на люстре — много, но только двух цветов, все просто. Все проводники одного цвета скручиваете оголенными частями и соединяете с одним из проводов на потолке (неважно с каким). Собираете в один жгут все проводники второго цвета и присоединяете ко второму потолочному. Схема подключения люстры в этом случае показана на рисунке ниже.

Схема подключения люстры к одноклавишному выключателю

При таком включении одновременно загораться будут все лампочки.

Правила соединения проводов

При работе с электричеством мелочей не бывает. Потому соединение проводов в люстре делаем по всем правилам. При объединении в одну группу, их недостаточно просто скрутить и накрутить защитный колпачок.

Соединить провода от люстры и выключателя нужно в клеммной коробке

Такая скрутка рано или поздно окислится и начнет греться. Очень желательно такие соединения пропаять. Если вы умеете обращаться с паяльником и оловом, обязательно это сделайте. Так будет гарантирован нормальный контакт и греться соединение не будет.

Теперь о том, как соединять провода от люстры с проводами от выключателя (которые на потолке). По последним правилам скрутки недопустимы. Необходимо использовать клеммные коробки. Большинство современных люстр укомплектованы ими. Если нет — купите в любом строительном магазине или торгующем осветительными приборами.

При использовании такой клеммной коробки возникает проблема: скрутка из большого числа проводов в отверстие просто не лезет. Выход: к соединению припаять проводник (медный, одножильный или многожильный, сечением не менее 0,5 мм 2 ). Это соединение хорошо заизолировать, и в клеммную коробку вставлять свободный конец припаянного проводника (длинный не нужен — см 10 более чем достаточно).

Вставив в клеммник все провода от люстры и затянув винты, всю конструкцию поднимают под потолок. Там ее предварительно крепят, после чего в клеммник в нужном порядке подключают провода. При этом важно один напротив другого установить «ноли». Фазы к фазам подсоединяются в произвольном порядке.

Как разделяют провода на люстре, как присоединяют проводник и люстру к клеммнику — все это есть в видео.

Подсоединение китайской люстры

Большая часть относительно недорогих люстр на рынке родом из Китая. Чем они хороши, так это большим ассортиментом, а вот с качеством электрической сборки бывают проблемы. Потому, перед тем как подключить люстру, нужно проверить ее электрические характеристики.

Сначала проверяют целостность изоляции. Их можно собрать в один жгут и закоротить на корпус. Тестер ничего показывать не должен. Если какие-то показания, у вас два варианта: искать и заменять поврежденный провод или отнести на обмен.

Второй этап проверки — проверка каждого рожка. От рожка идут два провода. Они в патроне припаиваются к двум контактам. Каждый провод прозваниваете с соответствующим контактом. Прибор должен показывать КЗ (короткое замыкание или знак бесконечности в зависимости от модели).

После проверки начинаете группировать провода, как описано выше.

Подключение галогенной люстры (с пультом и без)

Галогенные светильники работают не от 220 В, а от 12 В или 24 В. Потому в каждой из них установлены понижающие трансформаторы и вся схема собрана и готова к установке. Свободными остаются только два проводника, которые и нужно соединить с проводами, торчащими на потолке. Подключается в произвольном порядке, «фаза» и «ноль» — не имеют значения.

Если люстра укомплектована пультом, к трансформаторам добавляется еще блок управления. Подключение аналогично: есть два проводника, которые нужно соединить с теим, что есть на потолке. Идущий с другой стороны третий проводник (он тонкий) — это антенна, при помощи которой «общаются» пульт и блок управления. Этот проводник остается внутри стакана в таком виде, в каком он есть.

Как подключить люстру с пультом смотрите в следующем видео.

Схемы управления люстрой по двум проводам

  • Задействуем диоды
  • Схема на терморезисторе и реле
  • Используем счетчик
  • Самый простой вариант

Задействуем диоды

Первая идея заключается в использовании диодной схемы. Суть заключается в том, что несколько установленных параллельно выключателей включают лампы через диоды, перед лампочками также установлены диоды. Так как диод пропускает только одну полуволну синусоидального напряжения бытовой электросети (в данном случае), то и лампа включится та, перед которой включен диод в соответствующем направлении.

Недостаток этой схемы заключается в том, что на каждую осветительную группу подается лишь половина напряжения питания. Лампы накаливания в таком включении будут работать, а вот люминесцентные или светодиодные, если и включатся, то такое питание приведет к преждевременному их выходу из строя. Лампы накаливания будут мерцать с частотой питающей сети, для России это 50 Гц, это ведет к повышенной утомляемости людей находящихся в помещении, а также головным болям и общим недомоганиям. Такой свет нельзя использовать в жилых помещениях.

Еще одна «диодная» схема управления люстрой по двум проводам заключается во включении всех лампочек, но на разную мощность, это реализовано с помощью диода. При включении 1-й клавиши выключателя включается первая полуволна, при второй – полное напряжение. Её можно применять для питания ламп накаливания или диммируемых светодиодных ламп. При этом конденсаторы нужны для того, чтобы при нажатии одной из клавиш включались только первые три источника света, ведь ёмкость не пропускает постоянный ток (одна полуволна – это тоже постоянный ток, но пульсирующий). Ёмкость нужна порядка 1 мкФ и напряжением более 300 В. Диоды отечественные КД202 (ж, к, м, р), КД203, КД206, иностранные 1n4007 (можно выпаять из сгоревшей люминесцентной лампы или зарядного устройства).

Схема выглядит следующим образом:
Также рекомендуем просмотреть видео, на котором подробно рассказывается, как управлять люстрой по двум проводам, добавив в схему конденсатор:

Схема на терморезисторе и реле

Третья схема управления светильником по двум проводам на терморезисторе и реле. При включении выключателя напряжение подаётся на схему и зажигаются лампы HL4-HL6. HL1-HL3 запитаны через нормально-замкнутые контакты реле (К1 – его катушка), при подаче питания они размыкаются. Параллельно катушке подключены: задающий резистор R1 и терморезистор R2. Протекание тока через R2 вызывает его нагрев. С повышением температуры его сопротивление падает (NTC или отрицательный температурный коэффициент).

У реле есть некий характерный гистерезис, это значит, что ток включения больший, чем ток удержания. Это значит, что при сниженном сопротивлении R2 ток продолжит протекать через него, но катушка остается запитанной достаточно для удержания реле во включенном состоянии. Чтобы включить все лампы, нужно быстро перевключить выключатель, тогда резистор не успеет остыть и ток пойдёт через него, тока через катушку будет недостаточно для размыкания контактов. Чтобы включить половину лампочек повторно, нужно выключить свет, подождать с половину минуты, чтобы терморезистор остыл и его сопротивление восстановилось, и включить заново.

  • Реле с сопротивлением обмотки около 300 ом, Uсрабатывания 7В, Uотпускания – 3В.
  • R2 – три терморезистора СТ3-17, соединённых параллельно.
  • R1 – МЛТ-0,25, в диапазоне десятков Ом, подобрать для того, что бы реле срабатывало и не срабатывало в зависимости от выбранного режима, который описан выше.
  • Диодный мост – любой рассчитанный на сетевой напряжение, например КЦ407А.
  • C1 – 50 мКф на 16 В.

Используем счетчик

Еще одна схема построена на логических элементах. Суть идеи заключается в том, что вы подаете импульсы и на его выходе попеременно появляются логические единицы. Они используются для включения полупроводниковых ключей, например транзисторов.

Переключение групп ламп происходит при быстром переключении выключателя (вкл./выкл.), так на вход счетчика С поступают тактовые импульсы и на выходе появляются логические единицы. Алгоритм работы:

  1. EL1 & EL
  2. EL1 & EL3 & EL
  3. EL1 & EL2 & EL3 & EL

Сброс счетчика происходит при подаче сигнала на вход R. Для этого нужно выключить SA1 на 15 секунд.

  • Счетные импульсы формирует DD3.
  • Первое включение, на выходе DD3 сформирован логический ноль, удерживается от C2.
  • Короткое переключение разряжает конденсатор и на выходе DD3 появляется логическая единица. Происходит переключение элемента DD2.1 по переднему фронту на счетном входе. И так при каждом кратковременном размыкании SA2.

Самый простой вариант

Мы уже упомянули о люстрах с пультом. Их стоимость на момент написания статьи начинается от 1500 рублей. У них есть преимущество для тех, кто не хочет собирать сложных схем – вам нужно только подключить питание к люстре. Остальные параметры устанавливаются с пульта.

Ассортимент таких устройств достаточно широкий и позволяет реализовать любые дизайнерские идеи в вашей квартире, в том числе есть музыкальные модели и модели, управляемые смартфоном.

Обзор подобной люстры предоставлена на видео:

Теперь вы знаете, как организовать управление люстрой по двум проводам, если нет возможности проложить дополнительную проводку от выключателя. Надеемся, предоставленная информация была для вас полезной и и вы смогли выбрать для себя наиболее подходящий способ решения проблемы!

Материалы по теме:

Схемы управления люстрой по двум проводам с использованием полупроводников

Один хороший инженер – электронщик говорил, что если, мол, в схеме есть реле, то она нуждается в доработке. И с этим нельзя не согласиться: ресурс срабатывания контактов реле всего несколько сотен, может тысяч раз, в то время, как транзистор, работающий на частоте хотя бы 1КГц делает каждую секунду 1000 переключений.

Схема на полевых транзисторах

Эта схема была предложена в журнале «Радио» №9 2006 г. Она показана на рисунке 1.

Алгоритм работы схемы такой же, как и у предыдущих двух: при каждом кратковременном щелчке выключателем подключается новая группа ламп. Только в тех схемах одна группа, а в этой целых две.

Нетрудно видеть, что основой схемы является двухразрядный счетчик, выполненный на микросхеме К561ТМ2, содержащий в одном корпусе 2 D – триггера. На этих триггерах собран обычный двухразрядный двоичный счетчик, который может считать по алгоритму 00b, 01b, 10b, 11b, и опять в том же порядке 00b, 01b, 10b, 11b … Буква «b» говорит о том, что числа указаны в двоичной системе счисления. Младший разряд в этих числах соответствует прямому выходу триггера DD2.1, а старший прямому выходу DD2.2. Каждая единичка в этих числах говорит о том, что открыт соответствующий транзистор и подключена соответствующая группа ламп.

Таким образом получается следующий алгоритм включения ламп. Лампа EL1 светит как только замкнется выключатель SA1. При кратковременных щелчках выключателем лампы будут зажигаться в следующих сочетаниях: EL1; (EL1 & EL2); (EL1 & EL3 & EL4); (EL1 & EL2 & EL3 & EL4).

Для того, чтобы осуществить переключение по указанному алгоритму, следует на вход C младшего разряда счетчика DD2.1 подавать счетные импульсы в момент каждого щелчка выключателя SA1.

Рисунок 1. Схема управления люстрой на полевых транзисторах

Управление счетчиком

Осуществляется двумя импульсами. Первый из них – это импульс сброса счетчика, а второй – счетный импульс, переключающий лампы.

Импульс сброса счетчика

При включении устройства после продолжительного отключения (не менее 15 секунд) электролитический конденсатор C1 полностью разряжен. При замыкании выключателя SA1 пульсирующее напряжение с выпрямительного моста VD2 частотой 100Гц через резистор R1 формирует импульсы напряжения, ограниченные стабилитроном VD1 на уровне 12В. Этими импульсами через развязывающий диод VD4 начинает заряжаться электролитический конденсатор C1. В этот момент дифцепочка C3, R4 формирует импульс высокого уровня на R – входах триггеров DD2.1, DD2.2, и счетчик сбрасывается в состояние 00. Транзисторы VT1, VT2 закрыты, поэтому при первом включении люстры лампы EL2…EL4 не горят. Включенной остается только лампа EL, поскольку включается непосредственно выключателем.

Формирование счетных импульсов

Через диод VD3 импульсы сформированные стабилитроном VD1 заряжают конденсатор C2 и поддерживают его в заряженном состоянии. Поэтому на выходе логического элемента DD1.3 поддерживается низкий логический уровень.

При непродолжительном размыкании выключателя SA1 пульсирующее напряжение с выпрямителя прекращается. Поэтому конденсатор C2 успевает разрядиться, для чего потребуется около 30ms, и на выходе элемента DD1.3 устанавливается высокий логический уровень, – формируется перепад напряжения от низкого уровня к высокому, или как его часто называют восходящий фронт импульса. Именно этот восходящий фронт устанавливает в единичное состояние триггер DD2.1, подготавливая включение лампы.

Если внимательно всмотреться в изображение на схеме D – триггера, можно заметить, что его тактирующий вход C начинается наклонным отрезком идущим слева – вверх – направо. Этот отрезок говорит о том, что срабатывание триггера по входу C происходит по восходящему фронту импульса.

Вот тут самое время вспомнить про электролитический конденсатор C1. Подключенный через развязывающий диод VD4, от может разряжаться только через микросхемы DD1 и DD2, другими словами поддерживать их в рабочем состоянии некоторое время. Вопрос в том, насколько долго?

Микросхемы серии К561 могут работать в диапазоне питающего напряжения 3…15В, а в статическом режиме потребляемый ими ток исчисляется единицами микроампер. Поэтому в данной конструкции полный разряд конденсатора происходит не ранее, чем через 15 секунд и то, благодаря резистору R3.

Поскольку конденсатор C1 почти не разряжен, то при замыкании выключателя SA1 импульс сброса цепочкой C3, R4 не формируется, поэтому счетчик остается в том состоянии, какое получил после очередного счетного импульса. В свою очередь счетный импульс формируется в момент размыкания SA1, каждый раз увеличивая состояние счетчика на единицу. После замыкания SA1 на схему подается напряжение сети и зажигается лампа EL1 и лампы EL2… EL4 в соответствии состоянию счетчика.

При современном развитии полупроводниковых технологий ключевые (переключающие) каскады выполняются на полевых транзисторах (MOSFET). Делать такие ключи на биполярных транзисторах теперь считается просто неприличным. В рассматриваемой схеме это транзисторы типа BUZ90A, которые позволяют управлять лампами накаливания мощностью до 60 Вт, а при использовании энергосберегающих ламп такой мощности более, чем достаточно.

Еще один вариант схемы

На рисунке 2 показан возможный вариант только что рассмотренной схемы.

Рисунок 2. Схема управления 5 (3)-х ламповой люстрой

Вместо счетчика на D-триггерах в схеме применен сдвиговый регистр К561ИР2. В одном корпусе микросхемы содержится 2 таких регистра. В схеме используется только один, его выводы на схеме показаны в скобках. Такая замена позволила несколько уменьшить число печатных проводников на плате, либо просто не было у автора другой микросхемы. А в целом, внешне в работе схемы ничего не изменилось.

Логика работы сдвигового регистра очень проста. Каждый импульс, поступающий на вход C, передает содержимое входа D на выход 1, а также производит сдвиг информации по алгоритму 1-2-4-8.

Поскольку в данной схеме вход D просто запаян на + источника питания микросхемы (константа «лог. Единица») при каждом сдвиговом импульсе на входе С на выходах будут появляться единицы. Таким образом, зажигание ламп происходит в последовательности: 0000, 0001, 0011, 0000. Если не забывать про лампу EL1, то вместе с ней последовательность включения будет следующая: EL1; (EL1 & EL2); (EL1 & EL2 & EL3).

Первое сочетание 0000 будет появляться при первоначальном включении люстры под действием импульса сброса, формируемого дифцепочкой C3, R4, как в предыдущей схеме. Последнее нулевое сочетание появится также за счет сброса регистра, но только на этот раз сигнал сброса придет через диод VD4, как только на выходе 4 появится сигнал логической 1, т.е. при четвертом щелчке выключателем.

Остальные элементы схемы нам уже знакомы по описанию предыдущей. На микросхеме К561ЛА7 (до нее была трехвходовая ЛА9, также включенная инвертором) собран формирователь сдвиговых импульсов, а электролитический конденсатор C1 выполняет роль источника питания микросхем во время короткого щелчка выключателем. Выходными ключами являются все те же MOSFET, правда другого типа IRF740, что в целом ничего не меняет.

Схема управления люстрой на тиристорах

Предыдущие схемы почему-то коммутировали лампы при помощи полевых транзисторов, хотя для этих целей больше подходят тиристоры и симисторы. Схема с использованием тиристора показана на рисунке 3.

Рисунок 3. Схема управления люстрой на тиристорах

Как и в предыдущих схемах одна лампа EL3 включается просто при замыкании выключателя SA1. Группа ламп EL1, EL2 включается при повторном щелчке выключателя SA1. Работает схема следующим образом.

При первом замыкании SA1 загорается лампа EL3, и одновременно с этим пульсирующее напряжение с выпрямительного моста через резистор R4 подается на стабилизатор напряжения, выполненный на стабилитроне VD1 и конденсаторе C1, который быстро заряжается до напряжения стабилизации стабилитрона. Это напряжение используется для питания микросхемы DD1.

Одновременно с этим через резистор R2 начинает, причем не очень быстро, заряжаться электролитический конденсатор C2. В это время на выходе элемента DD1.1 высокий уровень, который заряжает конденсатор C3, таким образом, что на его правой по схеме обкладке плюс.

Как только заряд конденсатора C3 достигнет уровня логической единицы на выходе элемента DD1.1 появится низкий уровень, но на входах элементов DD1.2 DD1.3, благодаря заряженному конденсатору C3 и развязывающему диоду VD4, сохранится высокий уровень. Поэтому на выходах 4 и 10 элемента DD1 удерживается низкий уровень, который удерживает в закрытом состоянии транзистор VT1. Тиристор VS1 также закрыт, поэтому лампы не горят.

При непродолжительном щелчке выключателем SA1 конденсатор C1 разряжается достаточно быстро, тем самым обесточивая микросхему. Постоянная разряда конденсатора C2 намного выше, при указанных на схеме номиналах не менее 1 секунды. Поэтому конденсатор C3 быстро перезарядится в обратном направлении – плюс будет на его левой по схеме обкладке.

Если за время менее одной секунды успеть включить люстру вновь, то на входе элемента DD1.1 благодаря не успевшему разрядиться конденсатору C1 будет уже присутствовать высокий уровень напряжения, а на входах элементов DD1.2, DD1.3 низкий, заданный направлением заряда конденсатора C3. На выходах 4 и 10 элемента DD1 устанавливается высокий уровень, который открывает транзистор VT1, а тот в свою очередь тиристор VS1, зажигая лампы EL1, EL2. В дальнейшем такое состояние элемента DD1 поддерживается за счет обратной связи через резистор R3.

Микроконтроллерное управление люстрой

Схемы на микроконтроллерах неспроста считаются достаточно простыми по схемотехнике. Добавив незначительное количество навесных деталей можно получить очень функциональное устройство. Правда, расплатой за такую схемную простоту является написание программ, без которых микроконтроллер, даже очень мощный, просто кусок железа. Но при хорошей программе этот кусок железа превращается в некоторых случаях в произведение искусства.

Схема управления люстрой на микроконтроллере показана на рисунке 4.

Рисунок 4. Схема управления люстрой на микроконтроллере

Как и все предыдущие, схема управляется лишь одним только сетевым выключателем SW1. Щелчки выключателем позволяют не только выбирать количество включенных ламп, но осуществлять их плавное включение, устанавливать желаемую яркость свечения. Кроме того, позволяет имитировать присутствие людей в доме, – включать и выключать освещение по определенному алгоритму. Такое вот простенькое охранное устройство.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: