Термостои?кая грунтовка по металлу: особенности применения

Термостойкая грунтовка по металлу до 300 градусов

При подборе системы окраски металлоконструкций необходимо учитывать различные нагрузки, которым будет подвергаться окрашенная поверхность в процессе эксплуатации. Термостойкая грунтовка по металлу в баллончиках? Немаловажным фактором для выбора лакокрасочного покрытия является температурный режим, в котором будет функционировать конструкция. Повышенная температура эксплуатации может вызвать следующие проблемы покрытия:

  • Повышенное пожелтение нестойких к температуре пигментов или связующего.
  • Разрывы и расслоения толстого слоя лакокрасочного покрытия из-за разности коэффициентов расширения грунтового и поверхностного покрытий или внутри одного из них.
  • Разрушение структуры покрытия из-за нарушения химического состава связующего.

Таким образом, температурный режим должен учитываться уже на стадии проектирования системы окраски. Обязательно следует помнить, что все температуры, о которых далее пойдет речь, характеризуют так называемое “сухое тепло”, то есть температуру воздуха при минимальной влажности. Увеличение влажности воздуха, как всем известно из собственного опыта посещения бани, резко увеличивает нагрузку на покрытие и требует отдельного рассмотрения с обязательным привлечением специалистов компании-поставщика ЛКМ.

Можно выделить следующие температурные интервалы, для каждого из которых необходима своя система покрытий:

    Нормальный температурный режим – до 80 градусов. Можно наносить любые лакокрасочные покрытия, из антикоррозионных красок по металлу FEIDAL рекомендуется полиуретановая краска ZD 23.

Небольшие бытовые температурные нагрузки – до 100 градусов. Наиболее яркий пример конструкции, подвергающейся таким нагрузкам в быту – это радиаторы отопления. Для них можно применять специально модифицированные краски для металла на базе алкидных и акриловых смол.

В эти краски добавлены специальные термостойкие пигменты, которые не желтеют при нагревании.

Небольшие промышленные нагрузки – до 120 градусов. При промышленной антикоррозионной окраске в температурном режиме от 80 до 120 градусов не рекомендуется использовать алкидные покрытия. В данном диапазоне мы рекомендуем эпоксидные краски по металлу для внутренних работ и комбинацию эпоксидной грунтовки с цинк-фосфатом или цинковой пылью и полиуретанового покрытия для наружных работ, например FEIDAL MG 46+ZD 23 или MG 06+ZD 22. Некоторые полиуретановые покрытия, например FEIDAL ZD55, могут использоваться при температурах до 150 градусов.

Термостойкая грунтовка по металлу до 300 градусов? Обычно это 4-5 оттенков зеленого, серого и красно-коричневого. Тем не менее существует риск пожелтения красок светлых тонов, особенно белых.

Поэтому необходимо согласовать с поставщиком ЛКМ использование поверхностных покрытий с термостойкими пигментами.

Температурный интервал – от 200 до 400 градусов. В этом диапазоне используются однокомпонентные покрытия в основном на базе различных комбинаций этил-силикатных и эпоксиэфирных смол. Так как обычные пигменты при этих температурах очень быстро выгорают, в качестве пигментов используется металлическая пудра. Поскольку в этом температурном диапазоне влияние атмосферной влаги заметно снижается из-за ее испарения, обычно бывает достаточно применения однослойного покрытия. Наша компания предлагает грунт по металлу MG 06 и поверхностное покрытие жаропрочная краска по металлу PM 59 с алюминиевой пудрой.

В условиях невысоких коррозионных нагрузок можно использовать грунтовку MG 10 как однослойное покрытие, а при повышенных нагрузках, или в случае периодического падения температуры ниже 200 градусов мы рекомендуем нанести один слой грунтовки FEIDAL MG 10 и два слоя покрытия FEIDAL PM 59.

Наконец рассмотрим интервал от 400 до 650 градусов. В этом диапазоне применяются однокомпонентные покрытия на базе силиконовых смол. Мы предлагаем силиконовый грунт FEIDAL MG19 с цинковой пылью и силиконовое поверхностное покрытие FEIDAL SD05 с алюминиевой пудрой. Рабочая температура для этих покрытий – 500 градусов, однако они выдерживают краткосрочное нагревание до 650 градусов. Так как при таких температурах коррозионные нагрузки оказывают малое влияние на срок службы покрытия, а риск температурных разрывов особенно велик, эти покрытия наносятся очень тонким слоем, не более 30 микрон на каждый слой и не более 100 микрон суммарной толщины.

Также следует помнить, что такие покрытия полностью отверждаются только при нагревании до 200 градусов сроком не менее 2 часов.

  • При температурах, превышающих 650 градусов, применение классических лакокрасочных покрытий невозможно. Шпаклевка термостойкая по металлу под порошковую окраску? Сейчас разрабатываются специальные покрытия на базе жаростойкого стекла и современных композитных материалов, однако их рассмотрение выходит за рамки этой статьи.
  • Таким образом видно, что современные лакокрасочные материалы обеспечивают адекватную защитную и декоративную окраску конструкций во всем диапазоне рабочих температур от +80 до +650 градусов. Мы поможем Вам подобрать индивидуальную систему покрытий для Ваших условий нанесения и эксплуатации.

    А вот при таких температурах уже нужно подумать о термостойком грунте. Если в инструкции к лакокрасочным термостойким материалам есть указание на необходимость нанесения грунта, нужно будет поломать голову над приобретением специализированного состава, который легко справиться с длительным нагреванием и сохранит свои свойства при максимальном нагреве оборудования.

    • увеличивает адгезию красок и лаков при последующем нанесении;
    • предотвращает образование оксидных продуктов;
    • сокращает расход краски вследствие уменьшения ее поглощения поверхностью;
    • образует плотный, долговечный защитный слой, устойчивый к термическому воздействию.

    Полезно: многие грунты не только обладают отличной адгезией сами по себе; они еще и преобразуют поверхность, на которую нанесены. Так, грунтовка для труб отопления, содержащая преобразователь ржавчины, химически трансформирует пленку окислов в стойкое нерастворимое покрытие, которое становится основанием для эмали.

    Грунтовка используется для того, чтобы проникая в основание укреплять его, обеспыливать, подготавливать к нанесению составов с различной плотностью и вязкостью. Термостойкую грунтовку наносить следует на рабочую поверхность точно так же, как и привычную для многих маляров и штукатуров. Однако, вместо обыкновенных масел, смол и клеев в состав термостойких грунтовок входит акрил, полимеры, устойчивые к повышенным температурам.

    Это позволяет подготавливать печи, камины, мангалы для декоративной отделки, более того, нанесение высокотемпературной эмали создаст ровное покрытие, без трещин и сколов.

    Так ли необходимо проводить грунтование поверхности, которая впоследствии будет нагреваться? Чтобы ответить на поставленный вопрос, необходимо разобраться с особенностями эксплуатации таких предметов. Приведем несколько из них, которые являются наиболее явными:

    Гарантийный срок хранения 6 мес от даты изготовления
    Расход составляет 0,2–0,4 кг/м2
    Упаковка Пластмассовые канистры по 1 кг.
    Время высыхания покрытия до степени 3 не более 24 ч
    Прочность сцепления покрытия с основанием не менее 0,8 МПа

  • При температурах, превышающих 650 градусов, применение классических лакокрасочных покрытий невозможно. Сейчас разрабатываются специальные покрытия на базе жаростойкого стекла и современных композитных материалов, однако их рассмотрение выходит за рамки этой статьи.
  • Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность

    Сопротивление любого проводника в общем случае зависит от температуры. Сопротивление металлов с нагревом увеличивается. С точки зрения физики это объясняется увеличением амплитуды тепловых колебаний элементов кристаллической решетки и возрастанием сопротивления движения направленному потоку электронов. Сопротивление электролитов и полупроводников при нагреве уменьшается – это объясняют другими процессами.

    Принцип работы термистора

    Во многих случаях явление зависимости сопротивления от температуры вредное. Так, низкое сопротивление нити лампы накаливания в холодном состоянии служит причиной перегорания в момент включения. Изменение значения сопротивления постоянных резисторов при нагреве или охлаждении ведет к изменению параметров схемы.

    С этим явлением борются разработчики, выпускаются резисторы с уменьшенным ТКС — температурным коэффициентом сопротивления. Стоят такие элементы дороже обычных. Но существуют такие электронные компоненты, у которых зависимость сопротивления от температуры ярко выражена и нормирована. Эти элементы называются терморезисторами (термосопротивлениями) или термисторами.

    Виды и устройство терморезисторов

    Терморезисторы можно разделить на две большие группы по реакции на изменение температуры:

    • если при нагреве сопротивление падает, такие терморезисторы называются NTC-термисторами (с отрицательным температурным коэффициентом сопротивления);
    • если при нагреве сопротивление увеличивается, то термистор имеет положительный ТКС (PTC-характеристику) – такие элементы называют ещё позисторами.

    Тип термистора определяется свойствами материалов, из которых изготовлены терморезисторы. Металлы при нагреве увеличивают сопротивление, поэтому на их основе (точнее, на базе оксидов металлов) выпускают термосопротивления с положительным ТКС. У полупроводников зависимость обратная, поэтому из них делают NTC-элементы. Термозависимые элементы с отрицательным ТКС теоретически можно делать и на основе электролитов, но этот вариант на практике крайне неудобен. Его ниша – лабораторные исследования.

    Конструктив термисторов может быть различным. Их выпускают в виде цилиндров, бусин, шайб и т.п. с двумя выводами (как у обычного резистора). Можно подобрать наиболее удобную форму для установки на рабочем месте.

    Основные характеристики

    Самая главная характеристика любого терморезистора – его температурный коэффициент сопротивления (ТКС). Он показывает, насколько меняется сопротивление при нагреве или охлаждении на 1 градус Кельвина.

    Хотя изменение температуры, выраженное в градусах Кельвина, равно изменению в градусах Цельсия, в характеристиках термосопротивлений пользуются все же Кельвинами. Это связано с широким применением в расчетах уравнения Стейнхарта-Харта, а в него входит температура в К.

    ТКС отрицателен у термисторов типа NTC и положителен у позисторов.

    Другая важная характеристика – номинальное сопротивление. Это значение сопротивления при 25 °С. Зная эти параметры, легко определить применимость термосопротивления для конкретной схемы.

    Также для использования термисторов важны такие характеристики, как номинальное и максимальное рабочее напряжение. Первый параметр определяет напряжение, при котором элемент может работать длительное время, а второй – напряжение, выше которого работоспособность термосопротивления не гарантируется.

    Для позисторов важным параметром является опорная температура – точка на графике зависимости сопротивления от нагрева, при которой происходит перелом характеристики. Она определяет рабочий участок PTC-сопротивления.

    При выборе терморезистора надо обратить внимание и на его температурный диапазон. Вне заданного производителем участка, его характеристика не нормируется (это может привести к ошибкам в работе оборудования) или термистор там вообще неработоспособен.

    Условно-графическое обозначение

    На схемах УГО термистора могут незначительно отличаться, но главный признак термосопротивления – символ t рядом с прямоугольником, символизирующим резистор. Без этого символа не определить, от чего зависит сопротивление – схожее УГО имеют, например, варисторы (сопротивление определяется приложенным напряжением) и другие элементы.

    Иногда на УГО наносят дополнительное обозначение, определяющее категорию терморезистора:

    • NTC для элементов с отрицательным ТКС;
    • PTC для позисторов.

    Эту характеристику иногда обозначают стрелками:

    • однонаправленными для PTC;
    • разнонаправленными для NTC.

    Литерное обозначение может быть различным – R, RK, TH и т.п.

    Как проверить термистор на работоспособность

    Первая проверка исправности термистора – измерение номинального сопротивления обычным мультиметром. Если замер ведется при комнатной температуре, которая не очень отличается от +25 °С, то и измеренное сопротивление не должно существенно отличаться от указанного на корпусе или в документации.

    Если температура окружающего воздуха выше или ниже указанного значения, надо взять небольшую поправку.

    Можно попытаться снять температурную характеристику термистора – чтобы сравнить её с заданной в документации или чтобы восстановить её для элемента неизвестного происхождения.

    Есть три температуры, доступные для создания с достаточной точностью без измерительных приборов:

    • тающий лед (можно взять в холодильнике) – около 0 °С;
    • человеческое тело – около 36 °С;
    • кипящая вода – около 100 °С.

    По этим точкам можно нарисовать приблизительную зависимость сопротивления от температуры, но для позисторов это может не сработать – на графике их ТКС, есть участки, где R температурой не определяется (ниже опорной температуры). Если термометр имеется, можно снять характеристику по нескольким точкам – опустив терморезистор в воду и нагревая её. Через каждые 15…20 градусов надо замерять сопротивление и наносить значение на график. Если надо снять параметры выше 100 градусов, вместо воды можно использовать масло (например, автомобильное – моторное или трансмиссионное).

    На рисунке изображены типовые зависимости сопротивлений от температуры – сплошной линией для PTC, штриховой – для NTC.

    Где применяются

    Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.

    Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.

    Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.

    Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.

    Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.

    Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.

    Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.

    Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.

    Что такое резистор и для чего он нужен?

    Что такое триггер, для чего он нужен, их классификация и принцип работы

    Принцип работы и основные характеристики стабилитрона

    Что такое диодный мост, принцип его работы и схема подключения

    Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность

    Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

    Терморезистор принцип работы

    Что такое терморезистор, общие положения

    Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

    При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

    В процессе производства полупроводнику придется разная форма. Есть терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

    Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

    Где используется (сфера применения)

    Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

    Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

    Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

    Типы по принципу действия

    Терморезисторы различаются по принципу действия. Выделяется два типа:

    1. КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.
    2. БЕСКОНТАКТНЫЕ. В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).

    Базовые характеристики терморезисторов

    При оценке терморезисторов нужно учесть и проанализировать их характеристики:

    1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
    2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
    3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

    Общий принцип действия

    Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

    В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

    При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

    Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

    Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

    Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

    При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

    После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

    В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

    Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

    Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

    Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

    Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

    При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

    Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

    Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

    Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

    Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

    Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

    Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

    Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

    Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

    В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

    Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

    Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

    Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

    Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

    Главные направления применения:

    1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
    2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
    3. Нагревательный узел в пистолетах для приклеивания.
    4. В машинах для нагрева тракта впуска.
    5. Размагничивание ЭЛТ-кинескопов и т. д.

    Где находится на схеме

    Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, TH1 или RK1.

    Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

    Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

    SMD и встроенные терморезисторы

    Существует также еще два вида терморезисторов, которым стоит уделить внимание:

    1. SMD — детали с особым типом монтажа (для внешнего крепления). Внешне они не сильно отличаются от конденсаторов SMD, изготовленных из керамики. Габариты соответствуют стандартному ряду — 1206, 0805, 0603 и т. д. По виду отличить такие изделия от терморезисторов SMD почти невозможно.
    2. Встроенные. Применяются в паяльных станциях (для контроля температуры жала), в том числе термовоздушного типа.

    Принцип работы терморезисторов

    Терморезисторы (термисторы) представляют собой полупроводниковые резисторы с нелинейной вольтамперной характеристикой, отличительной особенностью которых является резко выраженная температурная зависимость электрического сопротивления в диапазоне от -100 до 200 °С.

    Наибольшее распространение получили терморезисторы, сопротивление которых уменьшается при увеличении температуры, т. е. терморезисторы с отрицательным температурным коэффициентом сопротивления (ТКС). Вместе с тем, существуют резисторы, сопротивление которых возрастает с ростом температуры. Их обычно называют позисторами. Позисторы изготавливают на основе титанато-бариевой керамики.

    Рассмотрим терморезисторы с отрицательным ТКС, изготовляемые из полупроводниковых материалов. Уменьшение сопротивления полупроводника с увеличением температуры может быть обусловлено разными причинами –– увеличением концентрации носителей заряда или увеличением их подвижности, а также фазовыми превращениями.

    Первое явление характерно для терморезисторов, изготовленных из германия, кремния, карбида кремния, соединений типа АΙΙΙВV и др. Температурная зависимость удельного сопротивления полупроводника определяется в основном изменением концентрации носителей заряда, так как относительно слабым изменением их подвижности в большинстве случаев можно пренебречь.

    При абсолютном нуле температуры все энергетические уровни валентной зоны невырожденного полупроводника заняты электронами. В этом случае валентные электроны не могут участвовать в электрическом токе, так как любое их движение связано с увеличением энергии и, следовательно, с переходом на более высокий энергетический уровень, что невозможно в пределах валентной зоны. Поэтому при Т = 0 К полупроводник подобен изолятору, и его проводимость равна нулю. Для перехода электрона в зону проводимости беспримесного полупроводника необходимо передать ему энергию, равную ширине запрещенной зоны ∆Еg. Такую энергию валентные электроны могут получить, если кристалл нагреть до некоторой температуры. Благодаря наличию свободных уровней в зоне проводимости, перешедшие туда электроны смогут двигаться под действием электрического поля. Заметим, что проводимость полупроводника в данном случае будет обусловлена не только наличием электронов в зоне проводимости, но и появлением дырок в валентной зоне.

    Вероятность переходов электронов из валентной зоны в зону проводимости, а, следовательно, и число образовавшихся свободных электронов и дырок значительно (по экспоненциальному закону) возрастают с увеличением температуры:

    где ni – концентрация свободных электронов (индекс i указывает на то, что полупроводник собственный; заметим, что в собственном полупроводнике концентрация свободных дырок p = ni);

    ∆Εg – ширина запрещенной зоны, которая, строго говоря, сама зависит

    Т – абсолютная температура;

    k – постоянная Больцмана.

    Если в полупроводнике имеются примеси, то это приводит к образованию энергетических уровней внутри запрещенной зоны. Примесные атомы даже при относительно низких температурах могут поставлять электроны в зону проводимости (в этом случае примесь называется донорной, а полупроводник – n-типа) или дырки в валентную зону (примесь называется акцепторной, а полупроводник – p-типа), так как требуемая для этого энергия обычно значительно меньше ширины запрещенной зоны. Зависимость концентрации носителей заряда в полупроводнике n-типа от температуры показана на рис. 1.

    Большую часть терморезисторов, выпускаемых промышленностью, изготавливают из поликристаллических оксидных полупроводников, в которых преобладает ионная связь. Электропроводность этих материалов отличается от электропроводности рассмотренных выше ковалентных полупроводников. Как правило, полупроводниками являются оксиды переходных металлов, для которых характерно наличие незаполненных электронных оболочек и переменная валентность. При образовании такого оксида в определенных условиях (наличие примесей, отклонение от стехиометрии) в одинаковых кристаллографических положениях оказываются ионы с разными зарядами. Электропроводность оксидных полупроводников объясняется обменом электронами между этими ионами. Так как энергия, необходимая для такого обмена, невелика, все электроны (или дырки), которые могут переходить от одного иона к другому, можно считать свободными носителями заряда, а их концентрацию постоянной при температурах в рабочем для терморезистора диапазоне.

    Из-за сильного взаимодействия носителей заряда с ионами подвижность носителей заряда в оксидном полупроводнике оказывается довольно низкой и экспоненциально возрастает с ростом температуры. В результате зависимость сопротивления оксидного полупроводника от температуры оказывается такой же, как у ковалентных полупроводников, но она обусловлена не изменением концентрации свободных носителей заряда, а изменением их подвижности.

    В оксидах ванадия V2O4 и V2O3, в отличие от рассмотренных выше полупроводников, причиной значительного (на несколько порядков) изменения их сопротивления является фазовый переход при температурах 68 и -110 °С соответственно. На основе этих оксидов созданы терморезисторы с очень большим температурным коэффициентом сопротивления.

    Схематическое изображение температурной зависимости концентрации электронов в примесном (донорном) и собственном полупроводниках

    Форма термисторов

    • плоская пластина;
    • диск;
    • стержень;
    • шайба;
    • трубка;
    • бусинка;
    • цилиндр.

    Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

    Классификация терморезисторов по числу градусов в Кельвинах:

    • сверх высокотемпературные — от 900 до 1300;
    • высокотемпературные — от 570 до 899;
    • среднетемпературные — от 170 до 510;
    • низкотемпературные — до 170.

    Максимальный нагрев хоть и допустим для термоэлементов, но сказывается на их работе ухудшением качества и появлением значительной погрешности в показателях.

    Разновидности терморезисторов

    1. Термистор – терморезистор, сопротивление которого с ростом температуры уменьшается.

    2. Позистор – терморезистор, сопротивление которого с ростом температуры очень сильно возрастает.

    3. Терморезистор прямого подогрева, температура и сопротивление которого определяются температурой окружающей среды и саморазогревом от протекающего через него тока.

    4. Терморезистор косвенного подогрева, разогревается от специального дополнительного встроенного нагревателя.

    5. Болометр – терморезистор, чувствительный к воздействию теплового и оптического излучений, содержащий в своем составе активную и компенсационную части.

    Температурные датчики, терморезисторы, термореле.

    Датчики температуры – это датчики,которые значение температуры переводят в другие физические параметры, например, сопротивление или напряжение.

    Терморезисторы

    Терморезисторы – это температурные датчики, которые преобразуют значение температуры в сопротивление. Любой проводник имеет сопротивление, которое при изменении температуры также изменяется. Величина, которая показывает насколько изменяется сопротивление при изменении температуры на 1 0 С, называется температурный коэффициент сопротивления -ТКС, и если при увеличении температуры сопротивление увеличивается, то ТКС -положительный, а если уменьшается, то отрицательный.

    Основные характеристики терморезисторов:

    -диапазон измеряемых температур;

    -максимальная мощность рассеивания (имеется ввиду тепловая характеристика);

    Термисторы – это терморезисторы с отрицательным ТКС (NTC – negative temperature characteristic ). Изготавливают их из оксидов различных металлов, керамики и даже кристаллов алмаза.

    NTC-резисторы применяют в качестве датчиков температуры, в бытовой технике и в промышленной, от -40 до 300 0 С.

    Ещё одна область применения это ограничение пускового тока в различных электронных устройствах, например в импульсных блоках питания,которые есть абсолютно во всех устройствах питающихся от сети. При подключении к сети термистор имеет комнатную температуру и сопротивление порядка нескольких Ом. В момент зарядки конденсатор происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока термистор разогревается и его сопротивление падает почти до нуля, и в дальнейшем он не влияет на работу устройства.

    Позисторы – терморезисторы с положительным ТКС (PTC – positive temperature characteristic ). Положительным ТКС, к примеру, обладают все металлы, также их изготавливают из керамики и полупроводниковых кристаллов.

    Позисторы также применяют в качестве датчиков температуры,но на этом их область применения не ограничивается, их применяют:

    В качестве защитных элементов в трансформаторах, электродвигателях и других электронных приборах, в которых есть риск возникновения перегрева. Для этого позистор включают последовательно с нагрузкой – обмоткой двигателя или электронной схемой, а сам позистор непосредственно в зону нагрева – приклеивают термоклеем к обмотке или заживают хомутом или просто прижимают используя термопасту. При этом такая защита от перегрева достаточно эффективна и не имеет пределов цикла включения/выключения, так как нет никаких размыкающих контактов, просто защитный термистор приобретает высокое сопротивление и через него проходт остаточный ток,значение которого совершенно не опасно для нагрузки. Но позистор всё-же можно вывести из строя – при резком скачке напряжения, так как ток превысит номинальный. Например, если вместо 220 В придёт 380 В, сопротивление его будет достаточно низким, так как температура в норме, а вот ток который через него пройдёт превысит номинальный и он просто выгорит, разомкнув нагрузку.

    Ещё одно применение – запуск электродвигателей компрессоров. Применяется такая схема в маломощных холодильных машинах – холодильниках, морозильных камерах, в которых установлены однофазные электродвигатели с пусковой обмоткой. В современных кондиционерах такую схему уже не используют, используя двухфазные электродвигатели с рабочими фазосдвигающими конденсаторами.

    В этом случае рабочую обмотку подключают непосредственно к сети, а пусковую через позистор. После запуска компрессора позистор нагревается от проходящего через него тока и увеличивает своё сопротивление, отключая пусковую обмотку. Кстати из-за этого при кратковременном пропадании питающего напряжения, компрессор может не запуститься, так как термистор не успеет остыть и выйдет из строя из-за перегрева основной обмотки.

    Применяют PTC – резисторы в схемах запуска люминесцентных ламп.

    В этой схеме при включении лампы позистор имеет малое споротивление и через него протекает ток, при этом разогреваются нити накала в лампе и сам позистор, после нагревания цепь позистора размыкается и лампа включается уже с разогретыми электродами. Эта схема значительно продлевает срок службы энергосберегающих ламп.

    Нашли применение данные терморезисторы и как датчики уровня жидкости. Схема контроля основана на разных свойствах жидкости и воздуха – теплоёмкость и теплопередача жидкости значительно превышает эти параметры в воздухе.

    Также позисторы применяют в качестве нагревательных элементов – в бытовой технике, автомобильной промышленности. Это как раз те самые разрекламированные керамические нагреватели, которые “не сжигают кислород”

    Термопары

    Термопара – это термопреобразовательный элемент, представляющий собой “спай” разнородных металлов.

    В схеме с двумя такими спаями при разности температур между ними в цепи появится термо-ЭДС, величина которой будет зависеть от природы металлов и разности температур между спаями. Впервые термоэлектрический эффект обнаружили ещё в первой половине девятнадцатого века.

    Применение для термопар самое различное – в промышленности, в медицине, для научно-исследовательских целей. Термопары могут измерять довольно высокие температуры, например температуру жидкой стали (около 1800 0 С).

    Материал для изготовления термопар – медь,хромель,алюмель, платина, и полупроводниковые материалы.

    Используется и обратный эффект – при пропускании электрического тока в цепи, появляется разность температур между двумя спаями, в середине прошлого века выпускали холодильники, рабочим элементом была термопара на основе полупроводников. Но из-за более низкого к.п.д., по сравнению с компрессорными холодильниками, их перестали выпускать.

    Полупроводниковые термочувствительные элементы

    Хотя и терморезисторы изготавливаю из полупроводниковых материалов, но здесь речь идёт о эффекте изменения температуры на p-n переходе транзисторов и диодов. Эти приборы характеризуются температурным коэффициентом напряжения – ТКН. Это изменение приложенного напряжения при изменении температуры. У всех полупроводников он отрицательный равен примерно 2мВ/ 0 С.

    На основе полупроводниковых датчиков температуры выпускают специализированные микросхемы, в которых на одном кристале помещается сразу и термочувствительный элемент усилители сигнала и схемы стабилизации. В настоящее время такие микросхемы широко распространены и выпускаются миллионами штук многими производителями. А потребитель получает готовое откалиброванное изделие с выходным сигналом нужной величины и нужной ему погрешностью (точностью). Используют такие микросхемы как датчики температуры в самых разнообразных устройствах.

    Ещё одно применение полупроводниковых термодатчиков – в качестве элементов стабилизации и компенсации в электронных схемах. К примеру при протекании тока через мощные силовые элементы он нагреваются, изменяется х сопротивление и ,соответственно, параметры, чтобы компенсировать этот эффект, на его корпус крепят термотранзистор и включают в схему термокомпенсации.

    Термореле

    Термореле – это устройства для включения или выключения нагрузки при достижении определённой температуры, они преобразуют тепловую энергию в механическую, которая идёт на замыкание/размыкание электрических контактов.

    Область применения данных изделий -автоматизация и защита устройств в быту, на производстве, в автомобилях. Например их используют в утюгах, тепловых завесах, электрокаминах. Главное их достоинство это невысокая цена и простота.

    Выпускают регулируемые термореле и настроенные на определённую температуру срабатывания. С замыкающими и размыкающими контактами, а также с группами контактов на замыкание/размыкание одновременно.

    Технические параметры термореле:

    -температура срабатывания – температура при достижении которой происходит замыкание/размыкание контактов реле

    -температура возврата, соответственно при ней происходит возврат в исходное состояние

    -гистерезис (дифференциал) -разница между температурой срабатывания и возврата

    -коммутируемый ток и напряжение, от этого параметра зависит долговечность прибора, стоит подбирать прибор с запасом по току

    -погрешность прибора, например +/- 10%

    Биметаллические термореле

    В таких реле срабатывание происходит из-за изгиба платины или диска, выполненных из биметалла (то есть из двух металлов), из-за разного объёмного расширения разнородных металлов. Они достаточно простые безотказные

    Есть две разновидности этих типов реле – терморегуляторы и термоограничители. Первый тип регулирует температуру в определённых пределах, автоматически включая и выключая нагрузку, а вторые используются для защиты и требуют после срабатывания сброса специальной кнопкой.

    Термодатчики манометрического типа

    Измерение температуры этими датчиками основано на эффекте объёмного расширения различными жидкостями.

    Используют их,например в водонагревателях или в кондиционерах для включения подогрева картера и дренажа. Они представляют из себя колбу с жидкостью, которая контактирует с измеряемой средой и соединена с контактами металлической трубкой. В качестве рабочего вещества обычно применяют смесь на основе спирта или этиленгликоля.

    Электронные термореле

    Это уже довольно сложные электронные устройства которые коммутируют нагрузку с помощью электромагнитных реле, контакторов, датчиками температуры могут служить почти все вышеперечисленные типы. Обрабатывает сигнал микроконтроллер или же специализированная электронная схема. Такие приборы могут иметь несколько каналов, например, четыре,то есть могут контролировать четыре точки и управлять четырьмя нагрузками, а выдавать информацию на электронный дисплей. Для монтажа в электрощит выпускают термореле в корпусе под DIN-рейку.

    Что такое терморезисторы и для чего они нужны

    • Устройство и виды
    • NTC
    • Основные сведения
    • Где используется
    • Маркировка
    • PTC
    • Основные сведения
    • Где применяется

    Устройство и виды

    Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:

    • NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
    • PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».

    Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).

    Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.

    Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.

    Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.

    • Номинальное сопротивление при 25 градусах Цельсия.
    • Максимальный ток или мощность рассеяния.
    • Интервал рабочих температур.
    • ТКС.

    Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.

    Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.

    Основные сведения

    Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

    Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

    Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

    Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

    Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

    Где используется

    Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

    На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

    На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

    Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

    Принцип работы такой схемы:

    Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

    Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

    Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

    Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

    Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

    Маркировка

    Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

    На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

    5D-20

    Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

    Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

    Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

    Основные сведения

    Позисторы, как было сказано, имеют положительный ТКС, то есть их сопротивление повышается при нагреве. Их изготавливают на основе титаната бария (BaTiO3). У позистора такой график температуры и сопротивления:

    Кроме этого нужно обратить внимание на его вольтамперную характеристику:

    Рабочий режим зависит от выбора рабочей точки позистора на ВАХ, например:

    • Линейный участок используется для измерения температуры;
    • Нисходящий участок используется в пусковых реле, реле времени, измерения мощности ЭМИ на СВЧ, противопожарной сигнализации и прочего.

    На видео ниже рассказывается, что такое позисторы:

    Где применяется

    Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или перегрузки, реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:

    1. Защиты электродвигателей. Устанавливаются в лобовой части каждой обмотки электродвигателя (для односкоростных трёхфазных 3, для двухскоростных 6 и т.д.), PTC-терморезистор предотвращает перегорание обмотки в случае заклинивания ротора или при выходе из строя системы принудительного охлаждения. Как работает эта схема? Позистор используется в качестве датчика, подключенного к управляющему устройству с исполнительными реле, пускателями и контакторами. В случае нештатной ситуации его сопротивление повышается и этот сигнал передаётся на управляющий орган, двигатель отключается.
    2. Защиты обмоток трансформатора от перегрева и (или) перегрузки, тогда позистор устанавливается последовательно с первичной обмоткой.
    3. Система размагничивания кинескопов ЭЛТ-телевизоров и мониторов. Кстати эта деталь часто выходит из строя и с этим случаем приходится сталкиваться при ремонте, характерен при этом выход из строя предохранителя.
    4. Нагревательный элемент в клеевых пистолетах. В автомобилях для прогрева впускного тракта, на пример на фото ниже изображен подогреватель канала ХХ карбюратора Pierburg.

    Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.

    Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, что такое терморезистор, как он работает и где применяется:

    Наверняка вы не знаете:

    Использование термисторов для ограничения бросков тока в источниках питания

    Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.


    Рис.1 Термистор

    Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.


    Рис.2 ТКС термистора

    Нас интересуют следующие параметры термистора:

    Сопротивление при 25˚С

    Максимальный установившийся ток

    Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

    1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
    2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
    3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
    4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

    Энергия заряженного конденсатора определяется формулой:

    E = (C*Vpeak²)/2

    где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

    Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

    Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

    Rном – номинальное сопротивление термистора при температуре 25°С

    Iмакс – максимальный ток через термистор (максимальный установившийся ток)

    Смакс – максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

    Как проводится тестовое испытание, можно посмотреть тут на седьмой странице.

    Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

    Терморезистор

    Термодатчик относится к числу наиболее часто используемых устройств. Его основное предназначение заключается в том, чтобы воспринимать температуру и преобразовывать ее в сигнал. Существует много разных типов датчиков. Наиболее распространенными из них являются термопара и терморезистор.

    Виды

    Обнаружение и измерение температуры – очень важная деятельность, имеет множество применений: от простого домохозяйства до промышленного. Термодатчик – это устройство, которое собирает данные о температуре и отображает их в понятном для человека формате. Рынок температурного зондирования демонстрирует непрерывный рост из-за его потребности в исследованиях и разработках в полупроводниковой и химической промышленностях.

    Термодатчики в основном бывают двух типов:

    • Контактные. Это термопары, заполненные системные термометры, термодатчики и биметаллические термометры;
    • Бесконтактные датчики. Это инфракрасные устройства, имеют широкие возможности в секторе обороны из-за их способности обнаруживать тепловую мощность излучения оптических и инфракрасных лучей, излучаемых жидкостями и газами.

    Термопара (биметаллическое устройство) состоит из двух разных видов проводов (или даже скрученных) вместе. Принцип действия термопары основан на том, что скорости, с которыми расширяются два металла, между собой отличаются. Один металл расширяется больше, чем другой, и начинает изгибаться вокруг металла, который не расширяется.

    Терморезистор – это своего рода резистор, сопротивление которого определяется его температурой. Последний обычно используют до 100 ° C, тогда как термопара предназначена для более высоких температур и не так точна. Схемы с использованием термопар обеспечивают милливольтные выходы, в то время как термисторные схемы – высокое выходное напряжение.

    Важно! Основное достоинство терморезисторов заключается в том, что они дешевле термопар. Их можно купить буквально за гроши, и они просты в использовании.

    Принцип действия

    Терморезисторы обычно чувствительны и имеют разное термосопротивление. В ненагретом проводнике атомы, составляющие материал, имеют тенденцию располагаться в правильном порядке, образуя длинные ряды. При нагревании полупроводника увеличивается количество активных носителей заряда. Чем больше доступных носителей заряда, тем большей проводимостью обладает материал.

    Кривая сопротивления и температуры всегда показывает нелинейную характеристику. Терморезистор лучше всего работает в температурном диапазоне от -90 до 130 градусов по Цельсию.

    Важно! Принцип работы терморезистора основан на базовой корреляции между металлами и температурой. Они изготавливаются из полупроводниковых соединений, таких как сульфиды, оксиды, силикаты, никель, марганец, железо, медь и т. д., могут ощущать даже небольшое температурное изменение.

    Электрон, подталкиваемый приложенным электрическим полем, может перемещаться на относительно большие расстояния до столкновения с атомом. Столкновение замедляет его перемещение, поэтому электрическое «сопротивление» будет снижаться. При более высокой температуре атомы больше смещаются, и когда конкретный атом несколько отклоняется от своего обычного «припаркованного» положения, он, скорее всего, столкнется с проходящим электроном. Это «замедление» проявляется в виде увеличения электрического сопротивления.

    Для информации. Когда материал охлаждается, электроны оседают на самые низкие валентные оболочки, становятся невозбужденными и, соответственно, меньше двигаются. При этом сопротивление движению электронов от одного потенциала к другому падает. По мере увеличения температуры металла сопротивление металла потоку электронов увеличивается.

    Особенности конструкций

    По своей природе терморезисторы являются аналоговыми и делятся на два вида:

    • металлические (позисторы),
    • полупроводниковые (термисторы).

    Позисторы

    Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к этим устройствам предъявляются некоторые требования. Материал для их изготовления должен обладать высоким ТКС.

    Для таких требований подходят медь и платина, не считая их высокой стоимости. Практически широко применяются медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное применение, не более 180 градусов.

    Позисторы PTC предназначены для ограничения тока при нагревании от более высокой рассеиваемой мощности. Поэтому их размещают последовательно в цепь переменного тока, чтобы уменьшить ток. Они (буквально любой из них) становятся горячими от слишком большого тока. Эти приспособления используют в устройстве защиты цепи, таком как предохранитель, в качестве таймера в схеме размагничивания катушек ЭЛТ-мониторов.

    Для информации. Что такое позистор? Прибор, электрическое сопротивление которого растет в зависимости от его температуры, называется позистором (PTC).

    Термисторы

    Устройство с отрицательным температурным коэффициентом (это когда, чем выше температура, тем ниже сопротивление) называется терморезистором NTC.

    Для информации. Все полупроводники имеют меняющееся сопротивление по мере увеличения или уменьшения температуры. В этом проявляется их сверхчувствительность.

    Характеристики и обозначение термистора

    Термисторы NTC широко используются в качестве ограничителей пускового тока, самонастраивающихся сверхтоковых защит и саморегулируемых нагревательных элементов. Обычно эти приборы устанавливаются параллельно в цепь переменного тока.

    Их можно встретить повсюду: в автомобилях, самолетах, кондиционерах, компьютерах, медицинском оборудовании, инкубаторах, фенах, электрических розетках, цифровых термостатах, переносных обогревателях, холодильниках, печах, плитах и других всевозможных приборах.

    Термистор используется в мостовых цепях.

    Технические характеристики

    Терморезисторы используют в батареях зарядки. Их основными характеристиками являются:

    1. Высокая чувствительность, температурный коэффициент сопротивления в 10-100 раз больше, чем у металла;
    2. Широкий диапазон рабочих температур;
    3. Малый размер;
    4. Простота использования, значение сопротивления может быть выбрано между 0,1

    100 кОм;

  • Хорошая стабильность;
  • Сильная перегрузка.
  • Качество прибора измеряется с точки зрения стандартных характеристик, таких как время отклика, точность, неприхотливость при изменениях других физических факторов окружающей среды. Срок службы и диапазон измерений – это еще несколько важных характеристик, которые необходимо учитывать при рассмотрении использования.

    Область применения

    Термисторы не очень дорогостоящие и могут быть легко доступны. Они обеспечивают быстрый ответ и надежны в использовании. Ниже приведены примеры применения устройств.

    Термодатчик воздуха

    Автомобильный термодатчик – это и есть терморезистор NTC, который сам по себе является очень точным при правильной калибровке. Прибор обычно расположен за решеткой или бампером автомобиля и должен быть очень точным, так как используется для определения точки отключения автоматических систем климат-контроля. Последние регулируются с шагом в 1 градус.

    Автомобильный термодатчик

    Терморезистор встраивается в обмотку двигателя. Обычно этот датчик подключается к реле температуры (контроллеру) для обеспечения «Автоматической температурной защиты». Когда температура двигателя превышает заданное значение, установленное в реле, двигатель автоматически выключается. Для менее критического применения он используется для срабатывания сигнализации о температурном превышении с индикацией.

    Датчик пожара

    Можно сделать свое собственное противопожарное устройство. Собрать схему из термистора или биметаллических полосок, позаимствованных из пускателя. Тем самым можно вызвать тревогу, основанную на действии самодельного термодатчика.

    В электронике всегда приходится что-то измерять, например, температуру. С этой задачей лучше всего справляется терморезистор – электронный компонент на основе полупроводников. Прибор обнаруживает изменение физического количества и преобразуется в электрическое количество. Они являются своего рода мерой растущего сопротивления выходного сигнала. Существует две разновидности приборов: у позисторов с ростом температуры растет и сопротивление, а у термисторов оно наоборот падает. Это противоположные по действию и одинаковые по принципу работы элементы.

    Видео

    Читайте также:  Счетчик электроэнергии Энергомера СЕ101 R5 в разборе
    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: