Строительство заглубленного монолитного ленточного фундамента

Ленточный фундамент: глубина заложения, таблицы и расчет

Ленточный фундамент – один из самых надежных и долговечных фундаментов в частном строительстве. Это обусловлено тем, что монолитная железобетонная лента способна выдерживать колоссальные нагрузки. Но, к сожалению, не все знают, что надежность такого фундамента во многом зависит от его глубины заложения в грунт.

Содержание статьи:

Несмотря на то, что глубина устройства ленточного фундамента не является единственным показателем надежности и долговечности, она играет огромную роль в целостности всего дома в процессе его эксплуатации. Железобетонная лента любых размеров и марки бетона может со временем лопнуть, если она будет неправильно размещена в грунте, не учитывая его особенности.

Для того, чтобы не запутаться во всех типах фундаментов и грунтах, попробуем разобраться во всем по порядку. Сначала разберем типы монолитных лент, а затем конкретно для каждого типа ленточного фундамента определимся с глубиной заложения.

Факторы, влияющие на глубину заложения ленточных фундаментов

Наверное, стоит начать с того, что сами ленточные фундаменты делятся на три основных типа:

  1. Незаглубленные
  2. Мелкозаглубленные
  3. Заглубленные

Каждый из этих типов закладывается на определенную глубину, которая зависит от нескольких основных факторов:

  • Глубина промерзания грунта
  • Тип грунта
  • Уровень грунтовых вод

Стоит отметить, что глубина заложения ленточного фундамента — это расстояние от поверхности грунта до подошвы фундамента, а не та глубина, на которую копается траншея. В траншее, помимо фундамента может присутствовать подушка.

Теперь давайте разберемся, как эти факторы влияют на каждый тип ленточного фундамента в отдельности.

Незаглубленный ленточный фундамент

Незаглубленный ленточный фундамент применяется в строительстве частных домов крайне редко, потому что он является очень слабой опорой для будущего строения. Как правило, он весь располагается поверх грунта, а внутри находится только лишь песчаная, либо песчано-гравийная подушка.

Много писать о незаглубленном ленточном фундаменте я не буду, тем более ему уже была посвящена целая статья ранее. Да и вообще, само понятие глубины заложения у такого фундамента отсутствует.

Расчет глубины заложения ленточных мелкозаглубленных фундаментов

Это самый капризный, в плане глубины заложения фундамент. Во-первых, он не так надежен, как заглубленный, ну а во-вторых – для того, чтобы такой ленточный фундамент выдержал нагрузку строения, а также сдерживал все силы пучения, передаваемые от грунта, к его расчету необходимо подойти с особой ответственностью.

Как залить мелкозаглубленный ленточный фундамент я уже подробно описывал в одной из предыдущих статей. Поэтому в подробности вникать не будем.

Такой ленточный фундамент закладывается на глубину, которая значительно выше глубины промерзания почвы, поэтому и называется мелкозаглубленный. На него, в отличие от заглубленного, могут в значительной степени действовать силы пучения грунта.

Так же, немаловажным отличием мелкозаглубленных фундаментов является то, что его необходимо делать монолитным не только ниже уровня грунта, но и сразу, выставив опалубку, залить надземную часть фундамента – цоколь. Это в значительной степени усилит весь ленточный фундамент.

Глубина заложения мелкозаглубленного фундамента напрямую зависит от всех трех факторов, описанных выше. Для того, чтобы не запутаться, давайте рассмотрим таблицу.

Таблица №1: Глубина заложения ленточного мелкозаглубленного фундамента (минимальная), в зависимости от типа и глубины промерзания грунта

Примечание: Для того, чтобы узнать, какая глубина промерзания грунта в Вашем регионе, посмотрите ниже на таблицу №2, где даны значения для некоторых городов, с учетом типа грунта. Кликните по таблице, чтобы увеличить.

Таблица №2: Глубина промерзания грунта в некоторых регионах

Примечание: Помимо того, что на глубину заложения ленточного фундамента влияет глубина промерзания и тип грунта, так же не стоит отбрасывать еще один очень важный фактор – уровень грунтовых вод, о котором и поговорим далее.

Зависимость глубины заложения ленточного фундамента от уровня грунтовых вод (УГВ)

Существует два варианта расположения грунтовых вод – когда они расположены ниже глубины промерзания грунта, и когда – выше.

Уровень грунтовых вод ниже глубины промерзания грунта

Это можно считать хорошим показателем, и в этом случае, грунтовые воды в большинстве типов грунтов не оказывают особого влияния на глубину устройства монолитной железобетонной ленты.

Единственным ограничением, в данном случае, является то, что в таких грунтах, как суглинки, глины и им подобных, ленту необходимо закладывать минимум на половину глубины промерзания такого грунта. В других, «хороших» грунтах, этот фактор на заложение фундамента – не влияет.

Другими словами, если глубина промерзания в Вашем регионе, допустим – 1,5 метра , то ленточный мелкозаглубленный фундамент необходимо устраивать минимум на 0,75 метров .

Уровень грунтовых вод выше глубины промерзания грунта

Если грунтовые воды расположены высоко, то глубина копки траншеи для ленточного фундамента не зависит от их уровня только на скалистых грунтах, песчаных крупнозернистых, гравийных и им подобных.

На любых других типах грунтах, с высоким УГВ, монолитную ленту придется заглублять ниже глубины промерзания на 10-20см (таблица №2). В этом случае она станет заглубленным фундаментом.

Заглубленный ленточный фундамент

Заглубленный ленточный фундамент считается наиболее надежным из всех лент. Он закладывается ниже глубины промерзания грунта на 10-20 см . Еще одним условием его устройства является то, что грунт под его подошвой должен быть более или менее твердым.

В случае болотистых грунтов, торфяников и подобных им, ленточный фундамент закладывается на глубину, которая ниже этих слоев. В некоторых случаях, достаточно прокопать траншею до твердых пород грунта, а затем устроить песчаную или песчано-гравийную подушку до уровня, который чуть ниже глубины промерзания грунта в Вашем регионе.

Когда на строительном участке грунт совсем плох для заложения ленточного фундамента, или его устройство требует огромных затрат, можно попробовать рассчитать другой тип фундамента, например, плитный. Возможно, это будет как дешевле, так и надежнее.

Как уменьшить глубину заложения ленточного фундамента

После проведения всех расчетов по глубине заложения ленточного фундамента, частенько бывает так, что с учетом грунта и региона, его необходимо заложить очень глубоко. От сюда возникает вопрос о том, как сократить расходы и уменьшить глубину.

Существует несколько способов уменьшения глубины заложения ленточных фундаментов, все они основаны на том, чтобы уменьшить значение основных факторов, влияющих на фундамент.

Читайте также:  Чалды для кофемашины - что это такое: как правильно выбрать чалдовую кофеварку

Уменьшение глубины промерзания грунта

Изменить климат в регионе мы, конечно же, не сможем, но сможем изменить глубину промерзания, конкретно под подошвой фундамента, утеплив сам фундамент и грунт, прилегающий к нему с наружной стороны.

Таким образом мы сможем уменьшить глубину заложения фундамента, а также сократить расходы на него.

Отвод грунтовых вод от ленточного фундамента

Еще один действующий способ уменьшения глубины заложения ленточного фундамента – отвод воды от него.

Делается это с помощью устройства хорошей дренажной системы, которая отведет значительную часть воды от фундамента и не даст ей пагубно воздействовать на него.

Песчаная или песчано-гравийная подушка под фундаментом

В случае, когда на участке пучинистые слои грунта залегают достаточно глубоко, ленточный фундамент также придется закладывать на большую глубину. Уменьшить ее можно, заместив пучинистый грунт песчаной или песчано-гравийной подушкой.

Другими словами, необходимо выкопать глубокую траншею до твердых грунтовых пород, а после этого устроить там массивную песчано-гравийную подушку, которая распределит нагрузку от фундамента и дома на грунт равномерно и не даст силам пучения пагубно воздействовать на фундамент.

Подушку желательно делать не только под подошвой фундамента, но и рядом с ним, как показано на схеме.

Стоит отметить, что самым надежным методом уменьшения глубины заложения ленточного фундамента, является комбинированный способ, т.е. и устройство подушки, и утепление, а также устройство дренажа, если это понадобится.

Заглубленный ленточный фундамент: советы и инструкция по строительству

Заглублённый ленточный фундамент — это один из вариантов ленточного основания, который возводится ниже уровня промерзания грунта на расстояние 1 – 3 м. Применяется для тяжёлых построек на нестабильных грунтах. Строительство (ЗЛФ) подходит для домов с цокольным этажом (подвалом).

В статье вы найдете ответы на вопросы: как построить ленточный заглублённый фундамент своими руками? Какие расчёты и материалы нужны для постройки загородного коттеджа. Пошаговая инструкция по монтажу от А до Я.

Для чего нужно заглублять фундамент

Применяют заглублённый ленточный фундамент на участках с нестабильными грунтами: средне — и сильнопучинистые.

А также заглубление основания используют при строительстве массивных здания, например: дома с подвалами, цокольными этажами и подземными гаражами. За счёт заглубления на 2–3 метра от нулевого уровня земли, основание способно выдержать тяжёлые стены сооружения. Поэтому такой тип фундамента, выбирают при строительстве загородных домов из шлакоблока, газобетона, пеноблоков и кирпича.

Таблица пучинистости грунтов

Рассчитать заглубление фундамента нетрудно, отталкиваясь от следующих факторов:

  • тип почвы и его рельеф на участке;
  • глубина промерзания и расположение грунтовых вод;
  • масса сооружения.

Причины неравномерной усадки:

  • вспучивание в зимний период;
  • небольшая плотность (неоднородность грунта);
  • большая нагрузка от строения.

Важно! Заглубление фундамента ниже точки промерзания необходимо на 2 – 3 м. Для того чтобы морозное пучение во время расширения грунта, не вытолкнуло конструкцию наружу. При проектировании дома следует определить глубину залегания плотного грунта, это обеспечит равномерную усадку здания.

Устройство заглублённого ленточного фундамента

  1. грунт;
  2. песчано-гравийная подушка или подбетонка;
  3. арматура;
  4. бетонная лента;
  5. гидроизоляция;
  6. цоколь;
  7. отмостка;
  8. утеплитель;
  9. стена.

Устройство заглубленного ленточного фундамента

Таблица № 1. Достоинства и недостатки

Преимущества Недостатки
несущая способность фундамента высокая цена (на создание требуется большой расход стройматериалов: пиломатериалы, арматура, бетон)
способная выдерживать тяжёлые постройки наличие подземных помещений (подвала, гаража, цоколя) большое количество земляных работ увеличивают сроки возведения, а привлечение техники повышает стоимость
долговечность конструкции подвержен вспучиванию грунтов

Виды ленточного фундамента глубокого заглубления

Сборно-ленточный фундамент

Фундамент сборного типа возводится из ФБС-плит, согласно ГОСТ 13579-78. Размер блоков подбирается в зависимости от площади сооружения, как правило — это ФБС 9 и 12.

Сборно-ленточный фундамент считается лучшим вариантом для пучинистых грунтов, т. к. блоки ФБС при деформации только выгибаются, а монолитная лента рвётся.

Нейтрализовать силы пучения при строительстве сборно-ленточного фундамента возможно, выполнив следующие действия:

  1. Устанавливайте блоки на подготовленную заранее подсыпку или подбетонку.
  2. Располагать блоки стоит ровно и строго в одной плоскости.

Блоки ФБС скрепляют между собой двумя способами:

  1. Цементным раствором марки М200 или М300.
  2. Металлическими закладными элементами.

Для надёжности основания сборную ленту усиливают металлоконструкциями из арматуры. Преимуществом основания является низкая себестоимость бетонных работ. Монтаж блоков подразумевает отсутствие опалубочных работ.
Недостатком считается аренда крана для установки.

Монолитный ленточный фундамент

Монолитный ленточный фундамент

Монолитно-ленточный фундамент возводится путём бетонирования ленты. Бетонный раствор заливается в опалубку, сооружённую ранее. С укреплением основания арматурной сеткой. Арматурные пруты диаметром 12 и 14 мм связываются между собой. После заливается раствор М200, М300 в зависимости от сооружения, которое хотим построить.

Преимуществом монолитно-ленточного основания, не требуется привлекать дополнительную технику для монтажа. Хотя арендовать бетономешалку или заказывать АБС всё же придётся. Поскольку заливать раствор в ленту нужно сразу по всему периметру. Недостатком является большие затраты на материалы: доски, арматура, бетонный раствор.

Комбинированный ленточный фундамент

Комбинированный ЗФЛ — это сочетание столбчатого и ленточного фундамента. Основание ленты монтируется на столбы, вкопанные заранее.

А также бывают сборно-монолитные типы – сочетание блоков ФБС и часть залитой бетоном ленты.

Редко используется в строительстве небольших строений, т. к. нецелесообразно расходуется бюджет.

Расчёт заглублённой ленты фундамента

Расчёты на стадии планирования важный критерий для определения, какой фундамент нужен для нашего дома или сооружения.
Например, для лёгких построек хватит мелкозаглубленного или незаглубленного ленточного фундамента, а заглублённая лента будет нерациональным вложением денег.

Тип грунта

Определить тип грунта на участке строительства. Способы проверки почвы:

  1. Самостоятельно сделать несколько шурфов в разных точках на разной глубине строительной территории провести анализ почвы.
  2. Обратиться к профессионалам в специальные службы.

Уровень грунтовых вод

Уровень грунтовых вод узнаём путём создания скважин. Прорубив несколько скважин ,опускаем деревянную рейку вниз, делаем это спустя 2–3 часа. Глубину определить можно, когда появится вода. А также если поблизости от участка застройки есть колодец. То можно определить по нему уровень грунтовых вод.

Важно! Проводите замеры весной, когда уровень грунтовых вод повышается.

Глубина промерзания

Карта глубины промерзания грунта по России

Читайте также:  Чугунные твердотопливные котлы – классика жанра

Глубину промерзания определяем по карте. От этого критерия зависит, насколько будет заглубляться фундамент.

Масса сооружения

Удельный вес конструкции

Определяем массу здания. Для этого сложите вес всех стройматериалов. Нужно сложить массу всех стен, перекрытий и крыши.

Ширина основания

Ширину определяем по формуле B = 1,3×Р/(L×Rо)

  • 1,3 — коэффициент запаса несущей способности;
  • Р — общий вес дома с фундаментом (кг);
  • L — длина ленты (см);
  • Rо — сопротивление несущего грунта, кг/см².

Сопротивление несущего грунта

Пример расчёта заглублённой ленты фундамента

Проведём расчёты для кирпичного двухэтажного дома. Размер загородного дома составит 10X8 м. с одной несущей перегородкой, длина которой равна стороне. Стены высотой 5 м и толщиной 380 мм (полтора кирпича), а фронтонов 1,5 м. Междуэтажное и цокольное перекрытие из пустотных плит, а кровля из металлочерепицы.

Тип грунта возьмём суглинок глубиной 1,1 м.

В качестве примера возьмём глубину заложения ленты 1,6 м (Определяйте опираясь на глубину промерзания грунта на вашем участке).

  1. Вес дома: 212 м², а масса их 212 × 200 × 3 = 127 200 кг (без учёта оконных и дверных проёмов).
  2. Общая площадь цокольного и междуэтажного перекрытий 160 м², а масса их с учётом эксплуатационной нагрузки 160 × (350+210) = 89 600 кг.
  3. Крыша в нашем примере имеет площадь около 185 м². Масса её при кровле из металлочерепицы и снеговой нагрузке для средней полосы России будет равной 185 × (30 + 100) = 24 050 кг.
  4. Суммируем полученные цифры и получаем 240 850 кг.
    Вес фундамента высотой 1,6 м и длиной ленты 44 м и с предварительно принятой шириной 0,2 м будет равён 1,6 × 44 × 0,2 × 2500 = 35 200 кг.

Общий вес проекта составил 276 050 кг.
Приняв значение Rо для суглинка равным 3,5 кг/см² (по таблице)
Рассчитаем ширину подошвы основания: В = 1,3 × 276 050 / (4400 × 3,5) = 23,3 см

Принятые изначально 20 см не превышает полученное значение более чем на 5 см. Поэтому округлив значение до целого, берём значение ширины основания 24 см.

Технология возведения заглублённого ленточного фундамента своими руками: пошаговая инструкция

Перед началом строительства заглублённого фундамента нужно перевести участок в порядок. Для этого убираем весь мусор, снимаем верхний плодородный слой земли и выравниваем рельеф.

Глубоко заглублённая лента требует большое количество затрат усилий и материала. Поэтому самостоятельно задача практически невыполнима. Привлекать технику и рабочие руки придётся. Если вы хотите построить дом быстрее.

Разметка и земляные работы

Переносим чертёж вашего проекта на земельный участок.

Для этого понадобиться:

  • колья;
  • верёвка или прочная леска.

Определяем первый угол с помощью теодолита или ориентируемся по рядом стоящее здание. Второй угол размечаем на нужном расстоянии в зависимости от проекта и вбиваем колье. Между ними натягиваем верёвку или шнур, это будет наружная поверхность стены.

Разметка заглубленного ленточного фундамента

Остальные стены размечаем относительно первой. Длину стен выставляем согласно вашему проекту. Если сооружение прямоугольное, проводится диагональ между углами, для проверки правильного размещения. После разметки наружных углов переходите к внутренним. Расстояние между ними зависит от проекта вашего дома. Для удобства копки траншеи переместите вбитые колья на расстояние 0,5 м от края траншеи.

Для земляных работ понадобиться:

  • лопаты или трактор;
  • тачка (для вывоза лишнего грунта).

Выкапываем траншею глубиной 150–250 см и шириной шире основания на 10–15 см.

Поскольку основание заглубляется глубоко в землю. Земляные работы значительно увеличиваются в сравнении с незаглубленным и мелкозаглубленным фундаментом.

Поэтому арендуется трактор (бульдозер) для рытья котлована на участке. Этот вариант поможет сэкономить время и силы, но никак не ваш бюджет.

При условии, что спец. машина не сможет подъехать к участку строительства. Нанимаются дополнительно рабочие руки для ускорения строительного процесса.

Песчаная, гравийная подложка

Для подушки (подсыпки) на дне траншеи по бокам делаются выемки, которые будут шире ленты основания на 10–15 см.
Далее, стелиться геотекстиль на дно траншеи, для предотвращения заливания подушки грунтовыми водами.

Для создания подсыпки существует два способа:

  1. Смесь гравийно-песчаная. Пропорция для приготовления (гравий/песок – 2/3) Толщина подушки составит 20–30 см.
  2. Засыпаем по слоям. Первый – 15–20 см слой крупно фракционного песка, а второй – 20 см мелкого щебня или гравия.

Важно! Для подсыпки подходят любые нерудные материалы. К примеру, керамзит, доменный шлак и другие.
А также часто используют вариант подбетонки.

Опалубка

Опалубка для заглублённого фундамента бывает двух типов: съёмной и несъёмной.

Съёмную опалубку изготавливают из обрезных досок толщиной 40–50 мм, влагостойкой фанеры, ОСП, шифера и т. д. После застывания фундамента такую опалубку демонтируют.

Деревянные щиты заглубляются в подсыпку на 5–7 см с внешней и внутренней стороны. Углы конструкции укрепляются дополнительно, так как основная нагрузка действует на них.

По периметру незабываем укреплять стойками на расстоянии — через 0,5-0,8 м, а внешнюю и наружную стороны скреплять шпильками между собой.

Далее, улаживаются гильзы для прохода коммуникаций и организовываются продухи. На дно опалубки укладывается гидроизоляционный материал – рубероид или плотный полиэтилен. Перед установкой арматуры делаем бетонную подготовку или «подбетонку» — тонкий слой бетона низкой марки.

Для установки опалубки понадобиться:

  • фанера или доска толщиной – 3–5 см;
  • саморезы;
  • шпильки и стойки (для укрепления).

Формулы для расчёта пиломатериала для опалубки — найдёте в статье.

Несъемная опалубка заглубленного ленточного фундамента

Несъёмную опалубку изготавливают из экструдированного полистирола. Стыки листов проклеивают гидроизоляционной мастикой. Иногда, на плотных грунтах, траншею роют так, чтобы стенки земли заменили опалубку. В этом случае вдоль стенок траншеи устанавливают полистирол либо укрывают рубероидом.

При заливке бетона эти материалы не дадут цементному молочку впитаться в грунт, а в дальнейшем, после затвердения бетона защитят фундамент от грунтовой влаги.

Армирование

Армирование заглубленного ленточного фундамента в траншее

В заглублённой ленте применяют 2 арматурных пояса, на расстоянии от края бетона большем, чем 75 мм. При создании используют стальную оребрённую арматуру.

На расстоянии между арматурными поясами 250–500 мм. В одном горизонтальном поясе укладывают 2–4 прута арматуры. Скреплённая хомутами – прямоугольников из более тонкой арматуры.

Армировать углы желательно прутьями, которые загинают под нужный угол. Чтобы нахлест со стеновой арматурой составлял 35–70 см, по длине прутья также соединяют внахлёст. Для скрепления каркаса применяют специальную вязальную проволоку, реже – сварку.

Диаметр арматуры выбирают так, чтобы площадь сечения арматурного каркаса была больше 0,1% от площади сечения ленты.

Заливка

Залить глубоко заглублённый ленточный фундамент непростая задача. Помимо строительных материалов и оборудования понадобиться хорошая погода, заливать фундамент можно при температуре не ниже +10 С. При температуре ниже -5 С необходимо заливать в раствор противоморозные добавки.

Для приготовления цемента понадобиться:

  • цемент;
  • песок;
  • щебень;
  • вода;
  • бетономешалка;
  • строительный вибратор или лопата.

Рецепт! Приготовление бетона классом B15 маркой М200 на 1м3. Пропорция для замешивания в бетономешалке: цемент, песок, щебень — 1 / 3,5 / 5,6 (кг). Добавляем воду на глаз, чтобы образовалась неоднородная масса.

Приготавливать бетонный раствор можно как вручную, так и заказать готовую машину с бетононасосом. Что очень сократит ваше время и реализацию проекта дома. В этом случае затраты значительно увеличиваются.

Заливка заглубленного ленточного фундамента с помощью АБС

При самостоятельном приготовлении соблюдайте пропорции и заливайте бетонный раствор слоями по периметру. Это способствует равномерному распределению бетона по опалубке. После 1–2 слоя в проходите строительным вибратором или штыкуйте лопатой, для того чтобы уплотнить и выгнать воздух из раствора.

После окончания накройте фундамент полиэтиленовой плёнкой. Прочность конструкция набирает через 30 дней. А через 7–10 можно снимать опалубку и приступать к следующим этапам работы.

Гидроизоляция и утепление

Гидроизоляция и утепление нужны любому типу фундамента. Это увеличивает его долговечность, укрепив структуру за счёт снижения влагонепроницаемости.

Гидроизоляция заглубленного ленточного фундамента

Гидроизоляция бывает нескольких типов:

  1. Обмазочная. Ленту обрабатывают битумной или эпоксидной мастикой – это влагонепроницаемый материал.
  2. Рулонная. Обклеиваем ленту со всех сторон рулонными материалами: Бикрост, Технониколь: внешней, внутренней и сверху.
  3. Проникающая. На этапе создания бетонного раствора добавляют специальную добавку – праймер. Специальные свойства добавки праймер способны уменьшить пористость бетона, при этом снижая его влагопроницаемость.

Совет! Хороший результат показывает комплексный подход. Сочетание проникающей инъекции в раствор с обмазочным или рулонным материалом.

Для утепления фундамент обшивают с внешней стороны пеноплексом или экструдированным пенополистиролом. Преимущество материалов в высоком коэффициенте теплосбережения, а также устойчивости к влаге и грызунам.
Крепится материал плитами к фундаменту. Утепляют основание вместе с цоколем.

Обратная засыпка

Обратная засыпка заглубленного фундамента

С обратной засыпкой спешить не надо. Подождите пока фундамент наберёт прочности и работы остальные работы будут завершены: цоколем и отмосткой.

После чего можно организовывать завершающий этап по засыпке фундамента.

Будьте внимательных, делая обратную засыпку грунтов без органики, используйте песчаные грунты.

Видео о ленточном глубокозаглубленном фундаменте

Заглубленный ленточный фундамент – технология строительства

Строители утверждают, что заглублённый ленточный фундамент монтируется при возведении дома с подвалом или при наличии цокольного этажа. Эта конструкция считается опорной, она находится ниже уровня земли и используется для удержания несущих стен. Необходимость такого заложения подземной конструкции возникает на участках с перепадами высот или при низком уровне промерзания почвы.

Необходимость заглубления фундамента

Глубоко заглублённое основание устанавливают в местности, где есть пучинистые грунты. Кроме этого основания применяют во время постройки габаритных зданий, домов с цокольными этажами, подземным гаражом или подвалом. Устройство такой конструкции обойдётся в круглую сумму денег через большие объёмы земляных работ и потребность в огромном количестве строительных изделий.

На уровень заглубления основания влияют такие параметры:

  • вид почвы;
  • глубина промерзания почвы;
  • залегание поверхностных вод;
  • рельефные особенности конкретного участка;
  • характеристики постройки.

Неравномерная усадка здания возникает в таких случаях:

  • вспучивание почвы;
  • неоднородность грунта;
  • большая нагрузка от здания на основание.

Основной задачей проектирования фундамента считается определение толщины плотной почвы, которая обеспечит равномерную усадку дома. Заглубляют основание на 20-30 сантиметров ниже уровня промерзания.

Если пренебрегать указанным требованиям, то почва начнёт двигаться и разрушит основание и стены здания. Его износоустойчивость зависит от структуры грунта на конкретном участке. Однородная земля защищает т образный заглублённый ленточный фундамент от неравномерных движений (усадки). При пересечении нестабильных слоёв почвы с плотными грунтами, проектировщики должны тщательно рассчитать глубину заложения конструкции. Уровень усадки будет зависеть от глубины залегания подземных вод. После завершения строительных работ почва под зданием движется, что приведёт к появлению трещин на основании или стенах дома.

Материалы и инструменты для работы

Перед устройством фундамента готовят инструмент и строительные материалы. Нам понадобится:

  • совковая и штыковая лопата;
  • бетономешалка;
  • уровень;
  • рулетка;
  • гвозди;
  • болгарка;
  • металлическая проволока для устройства каркаса;
  • деревянные или стальные колышки;
  • болгарка;
  • вязальная проволока.

Из материалов понадобится цемент, щебень и песок, а также изделия для гидроизоляционных работ (обмазочная гидроизоляция или рубероид). Для строительства заглублённого ленточного фундамента понадобится траншея значительной глубины. Её лучше вырыть при помощи экскаватора, чем вручную.

Подготовительные работы

Технология заглублённого монолитного ленточного фундамента требует от человека особенных знаний и умений. С проектированием и устройством этой массивной конструкции справится не каждый. Приведённая ниже пошаговая инструкция состоит из следующего плана работ:

  1. Все операции по устройству фундамента начинаются с составления проекта. Такую работу доверяют специализированной организации. Таким образом, застройщик избежит проблем с дальнейшей эксплуатацией здания и оформлением необходимых документов.
  2. План глубокозаглублённого ленточного фундамента переносят на местность. Для выполнения таких работ привлекают геодезистов.

Выравнивайте участок для строительных работ при помощи специальной техники это значительные финансовые вложения, но при помощи бульдозера можно сделать нужные уклоны под котлован на местности.

Земляные работы

После перенесения плана заглублённого фундамента с подвалом на местность и установки отметок приступают к земляным работам. Вот основные нюансы выкапывания траншей:

  1. Если здание имеет небольшие габаритные размеры, то работы можно доверить нескольким строителям. Работы проводятся при помощи ручного инструмента, лопат.
  2. Заглублённый фундамент — это сложная конструкция, особенно если дело касается крупных зданий с неправильными габаритными размерами. В данном случае траншеи разрывают экскаватором. Затем по периметру проходится бригада работников и подравнивает дно котлована и свисающие части грунта.
  3. Для удобства возведение стен ширину основания увеличивают на 10 сантиметров по отношению к проектным значениям. Подобный зазор позволяет упростить работы по устройству опалубки.
  4. В нижней части предварительно выровненной траншеи закладывают слой гравия 20 сантиметров. Этот материал необходимо тщательно разровнять и утрамбовать.
  5. Поверх этого слоя засыпаем 15-20 сантиметров песка, который тоже увлажняем и трамбуем.

Зачем необходимо укладывать полиэтиленовую плёнку на дне траншеи. Этот материал используется для качественной изоляции подошвы основания.

Альтернативным вариантом считается устройство подбетонки. Слой песка с гравием проливаем цементным раствором и разравниваем смесь. Для максимальной эффективности этот материал нужно выдерживать не менее недели.

Установка опалубки

Опалубка заглублённого ТИСЭ фундамента может быть несъёмной или съёмной. При постройке конструкции своими руками в большинстве случаев выбирают временный вариант. Такую опалубку сооружают с досок, её снимают с основания после высыхания бетонной смеси. Дерево пригодно для повторного использования.

Габаритные размеры опалубки будут зависеть от глубины траншеи и формы фундамента. Их длина колеблется в пределах 1,5-3 метра, но оптимальным вариантом считается 2 метра. Внутреннюю сторону опалубки делают ровной и гладкой.

Вбивайте шляпки гвоздей в доску так, чтоб они находились изнутри. При наружном размещении эти крепёжные элементы будут препятствовать строителям во время работ по разборке опалубки.

Ознакомимся с инструкцией для сборки опалубки для армированного монолитного фундамента:

  1. На углах котлована с наружной стороны траншей забиваем колышки. Верх направляющих должен выступать над поверхностью земли на 50 сантиметров.
  2. Колышки связывает натянутый шнур, который задаёт направление щитов.
  3. Далее нарезают доски одинакового размера. Их соединяют гвоздями или саморезами при помощи вертикального бруса, при этом шляпки крепёжных элементов нужно замаскировать на внутренней стороне щита.
  4. Щиты направляют по разметке, их закрепляют к брусьям от дна траншеи. Верхняя часть опалубки должна располагаться по уровню. Смещение вертикальных и горизонтальных плоскостей не допускается.
  5. Для выравнивания по горизонтали первый щит прикладывают впритык ко дну и закрепляют часть опалубки при помощи молотка и гвоздя. Второй край выравнивают по уровню и прибивают к брусу. все части опалубки должны устанавливаться по направлению шпагата.

Для удобства монтажных работ крайние брусья делают длиннее остальных. Их прочно закрепляют в грунте. Установленные щиты дополнительно скрепляют распорками. Подпирают опалубку по углам изнутри и снаружи.

Армирование

Как известно, армирование заглубленного ленточного фундамента сварными каркасами позволяет улучшить показатели упругости и прочности конструкции. На устойчивых грунтах можно обойтись без каркаса, но арматуру лучше уложить, что повысит долговечность здания.

Для этой цели используются металлические прутки с диаметром 10-14 миллиметров. Форма каркаса зависит от нагрузок на здания. В стандартной ситуации рекомендовано использовать два горизонтальных и два вертикальных каркаса. Соединение прутков в единую конструкцию происходит при помощи сварки. Каркас можно сделать своими руками без дополнительных приспособлений. В этом случае арматуру скрепляют между собой при помощи вязальной проволоки.

Для предотвращения соприкосновения арматуры с землёй нижнюю часть каркаса укладывают на кирпичики, таким образом, чтоб между металлом и землёй оставался зазор в 5 сантиметров. При выполнении этого условия можно предотвратить коррозию арматуры.

Бетонирование

После установки опалубки и металлических каркасов приступают к бетонированию заглублённого фундамента ушп с цоколем. Необходимое количество бетонной смеси можно заказать у специализированной организации. Раствор можно приготовить самостоятельно из песка, цемента и щебня. Пропорции сырьевых компонентов 3:1:5. Эти вещества тщательно перемешивают в мешалке, для создания необходимой консистенции бетона в сухие сыпучие материалы добавляют воду.

процесс бетонирования фундамента состоит из нескольких несложных операций:

  1. Готовим раствор в бетономешалке.
  2. Заливаем смесь в опалубку слоями по 15-20 сантиметров;
  3. Каждый из пластов необходимо уплотнить вибротрамбовкой. Во время проведения такого процесса необходимо следить, чтоб с бетона вышли все пузырьки воздуха.
  4. Раствор нужно подавать в траншею с небольшой высоты, падение смеси с расстояния 1,5 метра приводит к её расслоению.
  5. После заливки слой накрывают полиэтиленовой плёнкой и дожидаются его полного высыхания.

При наличии устойчивой жаркой погоды недавно устроенный фундамент необходимо периодически смачивать, чтоб на бетоне не появились трещины. Когда прочность бетонной смеси превысит 70% можно приступать к демонтажу опалубки.

При заливке опалубки через специальный насос пользователь получает ряд преимуществ. Это плотное, а также равномерное укладывание ленты, высокая скорость выполняемых работ и возможность заливки фундамента за один заход. К бетонированию заглублённого фундамента необходимо подойти со всей ответственностью. Такие операции должны проводить опытные, знающие своё дело строители. Безопасность и надёжность, а также прочностных характеристики здания будут зависеть от соблюдения технологии работ.

Гидроизоляция

Заглублённому бетонному фундаменту необходима защита от проникновения влаги. Гидроизоляционные изделия выбирают по таким характеристикам, как климатические и геологические условия, а также по параметрам постройки. В большинстве случаев для этой цели используются рулонные материалы или обмазочная гидроизоляция (битумная мастика).

На подготовительном этапе работ необходимо очистить основание от пыли и цементных наплывов. Если в качестве гидроизоляции будет использоваться еврорубероид, то такие изделия при укладке на поверхность нужно разогреть газовой горелкой. Рулоны стыкуются внахлёст с зазором в 15-20 сантиметров. Для эффективной защиты фундамента от воздействия влаги рубероид укладывают в два слоя с совмещением стыков.

В состав всех видов обмазочной изоляции входит битум. Такую гидроизоляцию распределяют по поверхности при помощи валика или шпателя, толщина рекомендуемого слоя составляет 3 миллиметра. Когда первая прослойка высохнет, укладывают второй слой обмазочной гидроизоляции. В этом случае мазки делают перпендикулярно до первого ряда.

От проникновения влаги защищают не только основание, но и цоколь здания. В дальнейшем в этой части укладывают плитку или натуральный камень.

Сильные и слабые стороны заглублённого фундамента

Основным плюсом рассматриваемой конструкции считается хорошая несущая способность. Мелкозаглубленное основание может не выдержать прилагаемых усилий, в то же время массивная бетонная плита простоит не один десяток лет. Ещё одним достоинством считается возможность устройства подвала.

Несмотря на некоторые преимущества, заглублённый фундамент имеет ряд недостатков. Это значительный расход материалов и человеческих ресурсов. Земляные работы занимают много времени, но этот недостаток можно нивелировать за счёт использования строительной техники.

Когда все операции по устройству фундамента закончены, можно выгонять стены жилого дома. Перед выполнением этого процесса необходимо проверить поверхность на горизонтальность. Неровные основания обрабатывают, а затем приступают к укладке стенового материала.

Устройство, принцип работы и схемы защитного заземления

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
    • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).
      Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).

Важно! При выборе схемы TN-C-S в качестве основы производства заземляющих работ важно учесть наличие глухозаземленной нейтрали. Получается, что ГЗШ дома соединяется с заземлением самого трансформатора, питающего объект.

    Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:

  • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
  • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
  • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Понятие и принцип действия защитного заземления

Работающие электрические приборы должны иметь заземление. В зависимости от цели оно может быть рабочим или защитным. Первое предназначено для корректной работы устройств, а второе – для защиты людей. Принцип действия одного и второго разный.

  1. Основные цели и задачи заземления
  2. Принцип защитного заземления
  3. Защита от попадания молнии
  4. Защита от импульсного перенапряжения
  5. Защита людей
  6. Отличие рабочего заземления от защитного
  7. Требования к защитному заземлению
  8. Бытовое заземление
  9. Работа заземления при неисправностях электрооборудования
  10. Как производится расчет параметров основных заземляющих элементов
  11. Установка заземлителей

Основные цели и задачи заземления

Заземление представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется

Почва способна нейтрализовать электрический ток, так как степень ее напряжения равна нулю. Сопротивление – это основной показатель заземляющего устройства, по которому можно судить о его качестве и способности выполнять свое предназначение. Удельное сопротивление зависит от состава почвы, наличия в ней химических веществ – кислотных или щелочных, влажности, рыхлости. В зависимости от состава почвы может потребоваться использование какого-либо специального комплекта заземления или же полная замена грунта для корректной работы заземляющих устройств.

Заземление – это соединение какого-либо прибора, электрической установки или части сети с заземляющим устройством. Оно представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется.

Заземлителей может быть несколько. В распределенной схеме они располагаются по периметру объекта, электрическую сеть которого необходимо обезопасить. Проводящая часть (заземлители) обычно выполняются из металла. К ним подводятся заземляющие электроды, которые имеют непосредственный контакт с почвой.

Устройство контура заземления

Заземляющее устройство монтируется по контуру. Контур заземления – это несколько проводников электродов, которые забиваются в грунт. Их длина – 3 метра, располагаются они на небольшом расстоянии друг от друга. В качестве соединения применяется горизонтальная металлическая полоса, которую укладывают в почву на небольшую глубину – до 1 метра. Соединение с электродами осуществляется с помощью обычной сварки. В специальных заземляющих комплектах части оборудования соединяются резьбой, что никак не влияет на рабочие свойства.

Рабочее заземление необходимо в следующих случаях:

  • Защита оборудования от накопления статического электричества. Процессы, происходящие в природе, например, молнии, могут влиять на ток, протекающий в цепи, в результате чего оборудование может быть повреждено. Электроды, установленные в грунте, отводят излишки тока.
  • Защита сети от замыканий.
  • Защита от перенапряжения.

Пример рабочего заземления – молниеотвод, который присоединен к электродам. Особенно актуально в генераторах, трансформаторах.

Принцип защитного заземления

Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.

Защита от попадания молнии

Схема защиты дома от молний

Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.

При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется. Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте.

Защита от импульсного перенапряжения

Устройства защиты от импульсных перенапряжений

Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.

В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.

Защита людей

Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.

В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.

Самодельные устройства могут выглядеть следующим образом: к корпусу прибора подсоединен провод, который выводится на улицу и соединяется с вбитым в землю металлическим изделием (труба, уголок, ведро, арматура). Эти изделия являются хорошими проводниками тока, в отличие от человеческого тела, поэтому ток выбирает металл и уходит в грунт.

Отличие рабочего заземления от защитного

Рабочее и защитное заземление по правилам техники безопасности не должно совмещаться водной схеме. При атмосферных разрядах электрические приборы могут повредиться, при этом защитное заземление не сработает.

В схеме функционального (рабочего) заземления все токонесущие конструкции соединяются с электродами, установленными в грунте. Для корректной работы рабочего заземления используются также предохранители, которые принимают напряжение на себя и выходят из строя.

Рабочее заземление оборудуется в том случае, если к приборам прилагается указание производителя и требования, которые защищают данное устройство.

К защитному заземляющему устройству предъявляется больше требований, так как оно имеет более важные задачи: сохранение жизни людей.

Назначение рабочего заземляющего устройства Назначение защитного заземления
Большая мощность приборов Трехфазные приборы мощностью менее 1 кВт
Электронное чувствительное оборудование Одно- и двухфазные устройства, не имеющие контакта с грунтом
Медицинские приборы Техника мощностью более 1 кВт
Электронная техника, которая является носителем важной информации В схемах с предохранителями и нулевым защитным проводником

Самое надежное заземление предусмотрено в схеме электросети дома. Кабели, которые подходят к каждой розетке, должны быть трехжильными. Третья жила соединяется с землей и отводит статическое электричество, а также предотвращает короткие замыкания и попадание молнии внутрь здания.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Необходимо обязательно обрабатывать сварные швы заземления от коррозии

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.

Если напряжение не превышает 42 В переменного тока или 110 В постоянного, заземление не требуется.

Бытовое заземление

Заземление ванны в квартире

Большая часть несчастных случаев в бытовых условиях связана с касанием прибора, который имеет повреждение изоляции. Тело человека в данном случае является проводником тока. Электрические варочные плиты, стиральные и посудомоечные машины, радиаторы отопления, микроволновки, бойлеры, ПК, мойки для посуды – все это металлические конструкции, которые хорошо проводят ток и без заземления могут причинить вред здоровью.

Короткое замыкание – это соприкосновение фазного и нулевого провода в сети, что приводит к срабатыванию аварийной защиты и отключению прибора от питания. Чаще всего происходит не короткое замыкание, а утечка тока, который накапливается в корпусе бытового оборудования. Это может привести к поражению электричеством.

Для безопасности человека необходимо устанавливать розетки с заземляющими контактами. К розетке должен быть подведен трехжильный кабель. При двухжильной и трехжильной системе заземление оборудуется по-разному – от распределительной коробки или электрического щитка.

В качестве заземлителя нельзя использовать газовые, водопроводные или трубы централизованного отопления.

Работа заземления при неисправностях электрооборудования

Под неисправностью оборудования подразумевают повреждение изоляции и возникновение фазы в корпусе прибора. Если части оборудования находятся под напряжением, но не имеют защиты в виде заземления и УЗО, человек, не подозревающий об опасности, может получить удар током.

Во втором варианте утечка тока может быть не значительной, устройство защиты оборудования не среагирует на напряжение и не отключит прибор. Человек может получить незначительный удар.

Если корпус не заземлен, но УЗО установлено, оно сработает через 0,02 секунды после прикосновения человека к корпусу прибора. Этого времени не достаточно для нанесения вреда здоровью.

Самой эффективной с точки зрения безопасности схемой является наличие заземления и УЗО. При возникновении утечки тока и переходе его в грунт УЗО реагирует и отключает прибор.

Как производится расчет параметров основных заземляющих элементов

Расчет параметров заземляющего устройства выполняется по формулам. Исходными элементами являются:

  • сопротивление грунта на данном участке;
  • длина, толщина, диаметр электродов, а также их количество.

На практике во всех случаях бывают расхождения с намеченным планом работ, так как показатель почвы необходимо анализировать более точно. Сделать это практически невозможно: на 100 квадратных метрах необходимо пробурить около 100 мини шахт глубиной до 10 м, чтобы оценить слои почвы, ее состав и включения элементов – глины, известняка, песка и других компонентов.

Установку заземляющих устройств проводят по главному принципу заземления: наличие запаса прочности, имея усредненные значения параметров. Чем ниже получается сопротивление, тем лучше для всех электрических приборов и людей.

Установка заземлителей

Вертикальные электроды более эффективно выполняют свои функции, так как их можно установить на большую глубину. При горизонтальной укладке на небольшую глубину сопротивление увеличивается, особенно в зимний период, когда верхние слои грунта промерзают.

Для электродов применяют штыри, длина которых более 1 метра (обычно 1,5 м). Такие конструкции легко забить в грунт с помощью обычного молотка, соединение выполняется в горизонтальной плоскости не менее 0,5 м в глубину.

Защитное заземление, его цели и задачи

Устройство защитного заземления – способ, электротехнического присоединения защитного проводника с нетоковедущими корпусами электроустановок, подвергаемые действию токов короткого замыкания фазного электротока. Защитный контур, главной задачей которого, является предохранение нанесения электротравм, связанных, с пиковыми значениями тока при коротком замыкании.

Для понимания сути устройства, следует знать основные теоретические вопросы.

Основные цели, задачи заземления

Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок.

При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.

Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением.

Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

Обязательно должны заземляться устройство с металлическим корпусом:

  • станки;
  • приборы;
  • корпуса электрощитовых;
  • пульты управления механизмами;
  • металлический корпус кабеля и муфт;
  • металлические трубы для укладки проводов.

При КЗ фазного провода на корпуса устройств, и касании человека их рукою, через его тело проходит опасный по величине электрический ток. При заземлении, основная часть напряжения уйдет на контур, потому, что его сопротивление меньше чем человеческого тела.

Отличие рабочего заземления от защитного

Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств.

Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения. Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств. При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.

Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали.

Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование.

При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

Защитное заземление применяется в сетях переменного тока до 1кВ с глухозаземленной нейтралью, свыше этого значения напряжения со всеми видами проведения нейтрального провода.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

Заземление и зануление: в чем разница по уровню безопасности

В предназначении и монтаже этих способов защиты от поражения электрическим током путаются даже профессиональные электрики. Речь идет не о всех, но прецеденты есть. А ведь элементарное понятие терминов иногда спасает десятки жизней. Даже если говорить не о поражении током, а о сдаче в эксплуатацию нового частного дома. Если выполнить защиту неправильно, контролирующая организация не разрешит подачу напряжения на вводной щит. И правильно сделает, никому не хочется брать на себя ответственность за жизни людей. Сегодня разберемся, что означают термины заземление и зануление, в чем разница между ними, и когда возможно использование того или иного способа защиты.

Требования электробезопасности: выдержки из ГОСТ

В соответствии с ГОСТ 12.1.009–76:

  • защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;
  • зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S.

Согласно ПУЭ заземление выполняется (при наличии контура или возможности его монтажа) в обязательном порядке. Заземленными должны быт все металлические корпуса электроприборов, которые гипотетически могут попасть под напряжение. Если возможность заземления отсутствует, производится защитное зануление с обязательной установкой устройств защитного отключения (УЗО) и автоматических выключателей в вводном электрическом щите.

Конечно, язык, которым написаны ПУЭ и ГОСТ бывает сложен для человека без электротехнического образования, а значит стоит разобрать подробно, что такое заземление и зануление на обычном языке, понятном простому обывателю.

Все металлические шкафы и корпуса приборов должны быть заземлены или занулены

Что такое заземление: как устроено, принцип работы и преимущества такой защиты

Принцип работы заземления в том, чтобы не допустить прохождения электрического тока через тело человека, если в силу каких-либо обстоятельств корпус электроприбора окажется под напряжением. Такое может случиться при повреждении изоляции жил кабеля. Рассмотрим пример. Жила с поврежденной изоляцией соприкасается с металлическим корпусом микроволновой печи. Хозяйка, готовя пищу на кухне, прикасается к электроприбору, который не заземлен. Это приводит к тому, что ток устремляется к земле, используя человеческое тело, как проводник. Итог может быть самым плачевным, вплоть до летального исхода.

Неисправная электропроводка приводит к возникновению напряжения на корпусе бытовых приборов

Теперь разберем для чего нужно заземление, как оно работает. Тот же пример, но уже с использованием защиты. Требования к заземлению применяются самые жесткие. При замерах сопротивление контура должно практически отсутствовать, что позволяет току беспрепятственно уходить в землю по шине. Законы физики не дают напряжению протекать через человеческое тело, которое имеет свое сопротивление. У одних оно больше, у других меньше, но наличие его не оспаривается. Получается, что ток утекает по пути наименьшего сопротивления, через заземлитель. Если при этом в схему включено УЗО, оно определит утечку и отключит подачу электроэнергии на прибор.

Устройство защитного отключения (УЗО) срабатывает при малейшей утечке тока

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор

Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Зануление и заземление: в чем разница

Разница этих систем в методе осуществления защиты. При устройстве защитного заземления роль отсекателя напряжения при возникновении аварийной ситуации берет на себя УЗО, а в случае монтажа зануления УЗО становится бессильно, сработать может только автомат. Почему так происходит? Устройство защитного отключения реагирует только на токовые утечки, совершенно игнорируя любые перегрузки, включая короткое замыкание. В случае монтажа зануления и включения в схему УЗО без автомата, при коротком замыкании УЗО не срабатывает, а попросту сгорает, не отключив напряжение с линии.

Вот к чему может привести неправильный монтаж защитного зануления

Чем отличается заземление от зануления: обобщение

Заземление отличается от зануления способом защиты и монтажом. Такие системы противоречат друг другу, а значит монтаж схемы с включением обоих вариантов, неприемлем. Зануление устраивается только в многоквартирных домах, не оборудованных собственным контуром. В иных случаях такой монтаж запрещен. О способах его устройства сейчас поговорим подробнее.

Что такое зануление и как его правильно устроить

Схема монтажа выглядит следующим образом. Пришедшая к вводному автомату нейтраль раздваивается, каждая из жил идет на отдельную шину. Одна из шин становится нулевой, а вторая заземляющей. От шины нейтрали жилы идут через автоматику и дальше на все нулевые контакты потребителей квартиры. Заземляющая соединяется с корпусом вводного щита, провод желто-зеленого цвета от нее идет на соответствующие контакты розеток и осветительные приборы, которые этого требуют. Соприкосновение заземляющего провода с нулевым после защитной автоматики запрещено.

Вывод заземления из-под земли. Ниже, на определенном расстоянии находится контур

Важная информация! Неправильный монтаж защитного зануления приводит к отгоранию жил кабелей, пожару. Так же возможно поражение электрическим током вплоть до летального исхода.

Лучший вариант защиты это заземляющее устройство?

Единственно правильный ответ на этот вопрос – да. Это действительно так. Контур заземления, смонтированный по всем правилам, защитит человека намного лучше предыдущего варианта. Улучшить защиту можно при помощи дополнительных устройств – автоматических выключателей, УЗО или дифавтоматов. Ведь что такое защитное заземление? По своей сути это система отвода электрического тока в случае аварии туда, где он не может навредить человеку.

Так должен выглядеть готовый контур заземления частного дома

Касаемо заземляющего устройства можно сказать, что оно может быть различным – контур заземления по периметру здания, «треугольник» во дворе или естественный заземлитель. Все правила и способы его монтажа мы обязательно рассмотрим в одной из ближайших тем. Но для общей информации имеет смысл понять определение, что является естественным заземлителем.

Полезно знать! В качестве естественного заземлителя можно использовать любые металлические конструкции, находящиеся под землей, за исключением трубопроводов ГСМ, канализации и предметов, покрытых антикоррозийными составами. Водопроводные трубы для этой цели могут использоваться.

В таких домах заземление не предусмотрено – придется довольствоваться занулением

Преимущества и недостатки квартирного зануления

О недостатках такой защиты говорилось сегодня много. Попробуем обобщить информацию. При таком способе нельзя быть уверенным на 100% в своей защите. Особенно, если монтаж выполнен неправильно. Еще одним минусом является то, что при слабом контакте или поврежденном кабеле, автомат просто не успеет сработать. В результате провод отгорит, что потребует ремонта.

Положительным в такой защите является возможность ее монтажа в многоквартирном доме старой постройки, где контур заземления отсутствует. Хоть и плохая, но все же защита. Сразу вспоминается поговорка, «с паршивой овцы хоть шерсти клок» или «на безрыбье и рак – рыба». Предлагаем посмотреть несколько фото примеров щитов с выполненным в них занулением.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: