Схемы ЭПРА для люминесцентных светильников и газоразрядных ламп

Зачем нужен ЭПРА (электронный балласт) для люминесцентных ламп

Что такое ЭПРА и для чего он нужен

Применение электронной пуско-регулирующей аппаратуры или аппарата (сокращенно ЭПРА) дает существенную прибавку к сроку полезной эксплуатации осветительного оборудования этого вида.

ЭПРА – это очередной виток развития систем зажигания лампы. Электронный баласт выпускается в виде отдельного модуля с контактами для подачи напряжения питания и контактами для подключения одного или нескольких источников света. Такой блок пришел на замену простой, но морально устаревшей схемы с дросселем и стартером. Такой конструкцией обычно оснащаются все современные светильники.

Устройство ЭПРА

Электронный пускорегулирующий аппарат (electronic ballast) является сложным электронным устройством. В состав входят:

  • Фильтр помех: необходим для нивелирования влияния помех из электросети и в нее;
  • Выпрямитель: необходим для преобразования переменного тока в постоянный;
  • Опционально: корректор мощности;
  • Сглаживающий фильтр: служит для снижения пульсаций;
  • Инвертор: повышает напряжение до необходимого;
  • Балласт: аналог электро-магнитного дросселя.

В некоторых моделях инвертор может быть дополнен регулятором яркости. Для этого необходим внешний светорегулятор (либо ручной, либо автоматический на базе фоторезистора). Схем разработано очень много. Элементная база ЭПРА для люминесцентных ламп (лл) весьма разнообразна: от мощных полевых транзисторов в мостовой схеме при нагрузках в сотни Ватт, до микросхем-драйверов в маломощных светильниках. Но тем не менее алгоритм работы един.

В упрощенном виде подключение одной лампы дневного света выглядит так:

Схема подключения ЭПРА с одной лампой

Т.е. подключение состоит всего из двух компонентов: люминесцентного источника света и электронного балласта. С точки зрения электрика это намного проще классического подключения люминесцентного светильника при использовании электромагнитного дросселя и стартера. На клеммы N и L подается сетевое напряжение. Вывод ground – заземление. Для работы электронного балласта подключение заземляющего контакта не является обязательным и служит лишь для безопасной эксплуатации.

ЭПРА сложны и состоят из множества электронных компонентов. Человеку без инженерного образования понять схему очень сложно. К тому же не каждый электрик сможет разобраться во внутреннем устройстве.

Один из вариантов принципиальной схемы ЭПРА

Это достаточно простая схема для инженера-электроника. В упрощенном понимании работа электронного балласта выполняется следующем образом. Выпрямление производится двухполупериодным выпрямителем – диодным мостом. Сглаживание пульсаций выполняется электролитическим конденсатором, рассчитанным на напряжение выше сетевого, так как амплитудное значение синусоиды для сети переменного тока примерно в полтора раза выше сетевого (√2*220В). Остальными процессами управляет микросхема. За подачу напряжения на лампы отвечают полевые транзисторы. Далее преобразователь работает автономно, частота не изменяется.

Знание электроники позволяет создать и схему питания люминесцентной лампы от низковольтных источников. Схема получается достаточно компактна. Самое важно правильно намотать трансформатор.

Принципиальная схема питания лл от низковольтного источника

Принцип работы пускателя

Какая бы ни была применена схема для пуска люминесцентной лампы. Общий принцип работы остается неизменным. В принципе, сходные процессы происходят при использовании дросселя и стартера. Всего три фазы:

  • Первоначальный прогрев электродов. В электронном баласте это происходит достаточно мягким повышением напряжения на вольфрамовые нити.
  • Поджиг. В этот момент схема подает высоковольтный импульс (обычно около полутора киловольт). Этого достаточно для электрического пробоя газа и паров ртути. Напряжение поджига у люминесцентных ламп существенно выше напряжения горения.
  • Горение. После высоковольтного импульса схема снижает напряжение до необходимого для поддержания тлеющего разряда. Частота переменного тока на электродах может достигать 38 кГц в зависимости от схемы.

В ЭПРА поджигающей импульс обеспечивается электронной схемой. В классической схеме – за счет энергии, накопленной дросселем. Прогрев электродов также обеспечивает ЭПРА. При стартерной схеме включения, электроды прогреваются в момент замыкания контактов стартера. Его можно заменить кнопкой без фиксации.

Схемы подключения

Разработка такого электронного устройства велась для минимизации конструкции светильника и замещения крупногабаритного дросселя и стартера одним единственным модулем, который подключается к сети питания переменного тока и к электродам люминесцентного источника света.

ЭПРА лишены всех минусов классических схем подключения.

Существуют модули, предназначенные для одновременного подключения четырех ламп.

Подключение ЭПРА к четырем лампам

Как в случае с одной или двумя лампами, схема не требует никаких дополнительных элементов. Модуль ЭПРА соединяется напрямую с лл.

Схема подключения ЭПРА 4х18 Вт (Пример:Navigator NB-ETL-418-EA3)

Схема подключения ЭПРА 2х36 Вт (Пример:ELECTRONIC BALLAST ETL-236)

ЭПРА для люминесцентных ламп: что это такое, как работает, схемы подключения ламп с ЭПРА

Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Читайте также:  Холодильники «Дон»: отзывы, обзор 5-ки лучших моделей, рекомендации по выбору

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых люминесцентных лампочек, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном балласте. Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Читайте также:  Фундамент под туалет на даче своими руками

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы регулятора мощности осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Выводы и полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

Вы разбираетесь в вопросах принципа работы и схем подключения ЭПРА и хотите дополнить изложенный выше материал личными наблюдениями? Или хотите поделиться полезными рекомендациями по нюансам ремонта, замены или выбора пускорегулирующего аппарата? Пишите, пожалуйста, свои комментарии к этой записи в блоке ниже.

ЭПРА (электронный балласт) – что это такое?

Для работы люминесцентных, энергосберегающих, светодиодных ламп и панелей необходимо наличие в цепи элементов, обеспечивающих на их входных контактах определенную заданную величину тока и напряжения. Это достигается применением пускорегулирующей аппаратуры.

В случае работы люминесцентной лампы эта аппаратура обеспечивает предварительный прогрев электродов, после чего ртуть, содержащаяся в трубке, постепенно начинает переходить в парообразное состояние. Для возникновения стабильного тлеющего разряда внутри лампы необходимо, чтобы на ее электроды поступил кратковременный импульс напряжения большой величины.

Устройство ЭПРА обеспечивает возникновение этого импульса, включение лампы после полного испарения ртути и в процессе работы понижает ток и напряжение на лампе.

В самой простой модификации такой режим обеспечивает электромагнитный дроссель совместно со стартером. Но в случае применения электромагнитного дросселя работу лампы сопровождает гудение, мерцание и мигание при включении.

Электронные пускорегулирующие аппараты в итоге решают те же задачи, что и электромагнитные. Они обязаны обеспечивать зажигание и стабильную работу светильников.

Электронный балласт – это прибор для понижения тока на элементах электрической цепи. Балласты применяются, если сопротивление нагрузки не в состоянии результативно снизить потребляемый ток. Это возникает в случаях, когда устройство имеет отрицательное переменное сопротивление по отношению к элементу питания.

Читайте также:  Установка фекальных насосов

Если такая нагрузка будет подключена к источнику постоянного напряжения, то через нее будет протекать ток, увеличивающийся до тех пор, пока она или источник тока не выйдут из строя.

Для предотвращения этого используется балласт, обеспечивающий активное или реактивное сопротивление, понижающее величину тока до расчетного значения.

Одним из устройств с отрицательным сопротивлением является газоразрядная лампа.

В настоящее время для пуска и обеспечения работы ламп наиболее часто стали использоваться электронные балласты ЭПРА, которые имеют целый ряд преимуществ по сравнению со схемой включения при помощи электромагнитного дросселя.

Внешний вид ЭПРА для ламп Т8

Существуют такие модификации ЭПРА, которые встраиваются в корпус люминесцентных ламп цокольной модификации.

Они устанавливаются в кожухе лампы, находящемся между цоколем и излучающей трубкой.

Для светодиодных ламп, панелей и лент, принцип работы которых основан не на использовании электрического разряда между электродами лампы, а на свечении кристаллических светодиодов, вместо ЭПРА применяются электронные блоки питания.

Они могут быть встроены в корпус лампы или же установлены в светильник как отдельный элемент цепи.

Ниже показано устройство светодиодной лампы со встроенным драйвером.

Компактная лампа с встроенным ЭПРА

Электронные балласты не требуют для зажигания лампы наличия стартера как самостоятельного элемента цепи.

Схема электронного пускорегулирующего аппарата создает заданное напряжение и ток в последовательности, требующейся для корректной работы.

Электронная схема ЭПРА на нужном уровне стабилизирует рабочий ток и преобразует переменное синусоидальное напряжение питающей сети частотой 50 герц в ток более высокой частоты, от 20 кГц до 60 кГц.

Поэтому при работе люминесцентной лампы достигается отсутствие мерцания, пульсаций при запуске и гудения светильника.

Существуют различные варианты зажигания ламп, которые можно реализовать с помощью ЭПРА.

Это может быть плавный пуск с постепенным увеличением яркости свечения до номинальной за несколько секунд. Можно установить моментальный запуск.

Так же как и электромагнитный дроссель, ЭПРА первоначально разогревают электроды лампы, затем создают высоковольтный импульс и после возникновения тлеющего разряда поддерживают ее работу в оптимальном режиме.

Применение этих приборов ведет к увеличению энергоэффективности лампы и сохранению ее работоспособности на весь установленный срок службы.

Ниже приводится электрическая схема электронного преобразующего аппарата, применяемого для включения и регулирования работы люминесцентной лампы мощностью 30 ватт.

На мостик, состоящий из четырех диодов D1, D2, D3, D4 типа 1N4007 подается напряжение сети 220 вольт, частотой 50 герц.

На нем происходит выпрямление входного напряжения, то есть нижний полупериод синусоидального тока переходит в верхнюю часть графика.

После этого ток, который был условно преобразован в постоянный, необходимо сгладить, уменьшив его амплитуду. Это выполняет конденсатор С1.

Для того чтобы полученное выпрямленное напряжение преобразовать в напряжение высокой частоты, используется инвертор на транзисторах Т1 и Т2.

В схеме используется трансформатор TU3802, имеющий две управляющие обмотки и одну рабочую, с которой напряжение частотой 20 кГц подается на электроды лампы.

Ток, подающийся на лампу, разогревает электроды, и ртуть в колбе начинает испаряться, а импульс напряжения величиной 1 200 вольт зажигает тлеющий разряд в лампе, и она начинает работать в стабильном режиме.

Возможно подключение нескольких ламп через один электронный пускорегулирующий аппарат. Ниже показаны схемы включения двух и четырех ламп через один балласт.

Две лампы на один ЭПРА Четыре лампы с общим ЭПРА

Для люстры можно использовать ЭПРА, если в ней установлены компактные люминесцентные лампы.

Для этого нужно выбрать прибор, рассчитанный на суммарную мощность всех ламп, установленных в люстре, с двукратным запасом по величине.

Если в люстре установлены светодиодные лампы без встроенного драйвера, то в схеме желательно предусмотреть электронный блок питания.

В случае применения электронных балластов устраняются такие негативные явления, как мигание ламп во время включения, мерцание и гудение, сопровождающие работу светильников с электромагнитными ПРА. Устраняется стробоскопический эффект, который имеет место при работе ламп на переменном токе частотой пятьдесят герц.

При использовании электронного балласта возникновение этого эффекта невозможно, поскольку на лампу подается ток высокой частоты в несколько десятков килогерц.

По цене ЭПРА довольно дорогие, но их стоимость быстро окупается в результате создания ими экономичного режима работы ламп в люстре.

Можно устанавливать в люстры лампы с встроенными драйверами.

При помощи электронных ПРА можно создать режим включения ламп с постепенным нарастанием мощности, отрегулировать поочередную работу различных групп ламп в люстре и применить другие интересные решения.

Электронные блоки питания и контроллеры применяются и в цепях со светодиодными лентами.

С применением ЭПРА мощность, расходуемая светильником, становится меньше на тридцать процентов по сравнению с потребляемой при использовании ЭмПРА.

Продолжительность пригодности лампы возрастает на пятьдесят процентов в связи с обеспечением ее работы в щадящем режиме.

Сокращаются расходы на ремонт и замену комплектующих в светильниках, оборудованных ЭПРА.

Читайте также:  Фасадные акриловые краски для наружных работ

Эти приборы незаменимы в цепях, обеспечивающих работу аварийного освещения.

Обзор работоспособных схем подключения люминесцентных ламп

Люминесцентная лампа — источник света, где свечение достигается за счет создания электрического разряда в среде инертного газа и ртутных паров. В результате реакции возникает незаметное глазу ультрафиолетовое свечение, воздействующее на слой люминофора, имеющийся на внутренней поверхности стеклянной колбы. Стандартная схема подключения люминесцентной лампы — прибор с электромагнитным балансом (ЭмПРА).

Устройство люминесцентных ламп

В большинстве лампочек колба выполнена в форме цилиндра. Встречаются более сложные геометрические формы. По торцам лампы имеются электроды, напоминающие по конструкции спирали лампочек накаливания. Электроды изготовлены из вольфрама и припаяны к находящимся с наружной стороны штырькам. На эти штырьки подается напряжение.

Внутри люминесцентной лампы создана газовая среда, которая характеризуется отрицательным сопротивлением, что проявляется при уменьшении напряжении между находящимися напротив друг друга электродами.

В схеме включения лампы используется дроссель (балластник). Его задача — образовать значительный импульс напряжения, за счет которого включится лампочка. В комплект входит стартер, представляющий лампу тлеющего разряда с парой электродов в инертной газовой среде. Один из электродов представляет собой биметаллическую пластину. В выключенном состоянии электроды люминесцентной лампочки разомкнуты.

На рисунке внизу изображена схема работы люминесцентной лампы.

Как работает люминесцентная лампа

Принципы работы люминесцентных источников света основываются на следующих положениях:

  1. На схему направляется напряжение. Однако вначале ток не попадает на лампочку из-за высокого напряжения среды. Ток движется по спиралям диодов, постепенно нагревая их. Ток подается на стартер, где напряжения достаточно для появления тлеющего разряда.
  2. В результате нагрева контактов пускателя током происходит замыкание биметаллической пластины. Металл берет на себя функции проводника, разряд завершается.
  3. Температура в биметаллическом проводнике падает, происходит размыкание контакта в сети. Дроссель создает импульс высокого напряжения в результате самоиндукции. Вследствие этого зажигается люминесцентная лампочка.
  4. Через осветительный прибор идет ток, который уменьшается вдвое, так как напряжение на дросселе сокращается. Его не хватает для еще одного запуска стартера, контакты которого находятся в разомкнутом состоянии при включенной лампочке.

Чтобы составить схему включения двух лампочек, установленных в одном осветительном приборе, необходим общий дроссель. Лампы подключаются последовательно, однако на каждом источнике света имеется параллельный стартер.

Варианты подключений

Рассмотрим разные варианты подключения люминесцентной лампы.

Подключение с использованием электромагнитного баланса (ЭмПРА)

Наиболее распространенный тип подключения люминесцентного источника света — схема со стартером, где используется ЭмПРА. Принцип действия схемы базируется на том, что в результате подключения питания в стартере возникает разряд и происходит замыкание биметаллических электродов.

Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В результате рабочий ток в лампочке увеличивается почти в три раза, происходит стремительный нагрев электродов, а после потери температуры проводниками возникает самоиндукция и зажигание лампы.

  1. В сравнении с другими способами это довольно затратный вариант с точки зрения расхода электроэнергии.
  2. Пуск занимает не меньше 1 – 3 секунд (в зависимости от степени износа источника света).
  3. Невозможность работы при низкой температуре воздуха (например, в условиях неотапливаемого подвального или гаражного помещения).
  4. Имеется стробоскопический эффект мигания лампочки. Этот фактор отрицательно действует на человеческое зрение. Такое освещение нельзя применять в производственных целях, потому что быстро движущиеся предметы (например, заготовка в токарном станке) кажутся неподвижными.
  5. Неприятное гудение дроссельных пластинок. По мере износа устройства звук нарастает.

Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки. Индуктивности дросселя должно хватать на оба источника света. Используются стартеры на 127 Вольт. Для одноламповой схемы они не подходят, там нужны устройства на 220 Вольт.

На картинке внизу показано бездроссельное подключение. Стартер отсутствует. Схема используется в случае перегорания у ламп нитей накала. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от 220-вольтной сети.

Следующая схема используется для лампочек с перегоревшими нитями. Однако отсутствует необходимость в повышающем трансформаторе, благодаря чему конструкция устройства становится проще.

Ниже показан способ использования диодного выпрямительного моста, который нивелирует мерцание лампочки.

На рисунке внизу та же методика, но в более сложном исполнении.

Две трубки и два дросселя

Чтобы подключить лампу дневного света, можно использовать последовательное подключение:

  1. Фаза от проводки направляется на вход дросселя.
  2. От дроссельного выхода фаза идет на контакт источника света (1). Со второго контакта направляется на стартер (1).
  3. Со стартера (1) отходит на вторую контактную пару этой же лампочки (1). Оставшийся контакт стыкуют с нулем (N).

Тем же образом подключают вторую трубку. Вначале дроссель, затем один контакт лампочки (2). Второй контакт группы направляется на второй стартер. Выход стартера объединяется со второй парой контактов источника света (2). Оставшийся контакт следует подсоединить к нулю ввода.

Читайте также:  Стеновые панели для коридора: простой и эффектный способ дизайна

Схема подключения двух ламп от одного дросселя

Схема предусматривает наличие двух стартеров и одного дросселя. Наиболее дорогостоящий элемент схемы — дросселя. Более экономный вариант — двухламповый светильник с дросселем. О том, как реализовать схему, рассказывается в видео.

Электронный балласт

Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.

Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.

Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.

Подключение осуществляется следующим образом:

  1. Первый и второй контакт соединяют с парой ламповых контактов.
  2. Третий и четвертый контакты направляют на оставшуюся пару.
  3. На вход подают электропитание.

Использование умножителей напряжения

Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.

В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.

Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.

Подключение без стартера

Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.

На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.

Последовательное подключение двух лампочек

В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.

Для проведения электромонтажных работ понадобятся такие детали:

  • индукционный дроссель;
  • стартеры (2 единицы);
  • люминесцентные лампочки.

Подключение выполняется в следующем порядке:

  1. Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
  2. Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
  3. К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.

Обратите внимание! В стандартных бытовых переключателях (особенно в недорогих моделях) нередко залипают контакты из-за слишком высоких стартовых токов. В связи с этим для использования в совокупности с люминесцентными лампами рекомендуется приобретать качественные выключатели.

Замена лампы

Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:

  1. Разбираем светильник. Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси. Направление движения указано на держателях в виде стрелочек.
  2. Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях.
  3. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность.
  4. Завершающее действие — монтаж рассеивающего плафона.

Проверка работоспособности системы

После подключения люминесцентной лампы следует убедиться в ее работоспособности и в исправности пускорегулирующих устройств. Для проведения испытаний понадобится тестер, с помощью которого проверяют катодные нити накала. Допустимый уровень сопротивления — 10 Ом.

Если тестер определил сопротивление как бесконечное, необязательно выбрасывать лампочку. Данный источник света еще сохраняет функциональность, но использовать его нужно в режиме холодного запуска. В обычном состоянии контакты стартера разомкнуты, а его конденсатор не пропускает постоянный ток. Иными словами, прозвон должен показывать очень высокое сопротивление, которое иной раз достигает сотен Ом.

После прикосновения щупами омметра дроссельных выводов сопротивление постепенно снижается до постоянной величины, присущей обмотке (несколько десятков Ом).

Обратите внимание! О неисправном состоянии дросселя говорит перегорание недавно поставленной лампочки.

Достоверно определить межвитковое замыкание в дроссельной обмотке, используя обычный омметр, не получится. Однако если в приборе есть функция замера индуктивности и данные по ЭмПРА, несоответствие значений укажет на наличие проблемы.

Читайте также:  Фундамент для веранды из древесины, бетона

ЭПРА для люминесцентных ламп

Работа люминесцентных ламп невозможна от сетевого напряжения 220 вольт, подаваемого напрямую. Для стабилизации напряжения и сглаживания токовых пульсаций требуются специальные устройства. Они объединяются в пускорегулирующей аппаратуре и включают в себя несколько компонентов. Стартер осуществляет пуск, дроссель сглаживает пульсации, а конденсатор стабилизирует напряжение. Все это использовалось в светильниках старого типа, которые были ненадежными, моргали и гудели.

  1. Назначение и устройство ЭПРА
  2. Принцип работы ЭПРА
  3. Подключение светильника к ЭПРА
  4. Преимущества и недостатки ЭПРА
  5. Неисправности и ремонт ЭПРА

Назначение и устройство ЭПРА

В настоящее время устаревшую аппаратуру сменили ЭПРА для люминесцентных ламп, представляющие собой электронные пускорегулирующие устройства. Они обеспечивают мгновенное включение лампы, могут работать практически с любым питающим напряжением, у них отсутствуют недостатки, характерные для старой ПРА. Люминесцентные лампы относятся к типу газоразрядных источников света. Стандартная конструкция включает в себя стеклянную трубку, наполненную инертным газом и ртутными парами, а также электроды в виде спиралей, расположенные по краям. Здесь же расположены контактные выводы, по которым поступает электрический ток.

Принцип действия таких ламп заключается в люминесценции газов, когда по ним проходит электроток. Обычного тока между электродами недостаточно, для того чтобы образовался тлеющий разряд. Поэтому спирали вначале разогреваются током, пропущенным через них, а затем происходит подача импульса с напряжением 600 В и выше.

В результате, с разогретых спиралей начинается эмитация электронов, которые совместно с высоким напряжением образуют тлеющий разряд. В дальнейшем ток и напряжение должны поддерживаться на определенном уровне, обеспечивающем нормальное функционирование лампы. По такому же принципу работают компактные или энергосберегающие люминесцентные лампы. Они отличаются от стандартных изделий только размерами и формами.

Питание всех типов ламп осуществляется через пускорегулирующий аппарат, называемый также балластом. В старых изделиях применялся электромагнитный балласт или ЭмПРА. В его конструкцию входили дроссель и стартер. Данные устройства обладали низким КПД, световой поток получался пульсирующий, сопровождаемый сильным гудением. Во время работы в сети возникали серьезные помехи. В связи с этим, производители постепенно отказались от ЭмПРА и перешли на более современные и удобные электронные устройства (ЭПРА).

Конструкция электронной пускорегулирующей аппаратуры выполнена в виде платы с расположенным на ней высокочастотным преобразователем. В данных устройствах отсутствуют недостатки, характерные для ЭмПРА, поэтому работа лампы стала более устойчивой. Она обеспечивает выдачу увеличенного светового потока и служит значительно дольше.

Стандартная схема электронного балласта включает в себя следующие детали:

  • Диодный мост;
  • Генератор высокой частоты на основе полумостового преобразователя. В более дорогих изделиях используется ШИМ-контроллер;
  • Динистор DB3, применяемый в качестве пускового порогового элемента и рассчитанный на напряжение 30 вольт;
  • Силовая LC-цепь для розжига тлеющего разряда.

Принцип работы ЭПРА

Избежать недостатков, присущих электромагнитному балласту, удалось путем подачи на лампу тока с высокой частотой колебаний – свыше 20 кГц. С этой целью был повышен коэффициент мощности светильника. Он состоит в возврате реактивного тока не обратно в сеть, а в специальное промежуточное накопительное устройство. Данный накопитель не имеет каких-либо связей с сетью, однако именно через него осуществляется питание лампы.

Переменное напряжение сети в 220 В подвергается преобразованию и становится постоянным со значением 260-270 В. Для сглаживания используется электролитический конденсатор С1, хорошо видимый на представленной схеме. Далее постоянной напряжение переводится в высокочастотное – до 38 кГц при помощи двухтактного полумостового преобразователя, состоящего из двух высоковольтных биполярных транзисторов – ключей. Благодаря возможности такого преобразования, размеры ЭПРы для люминесцентных ламп значительно снизились.

В схеме электронного балласта имеется трансформатор, выполняющий функцию управления преобразователем и одновременно являющийся для него нагрузкой. Он состоит из трех обмоток: одна – рабочая с двумя витками, выдающая нагрузку на цепь, и две обмотки управления с четырьмя витками.

Особое значение придается динистору, обеспечивающему запуск преобразователя. В случае превышения допустимого порога напряжения происходит его открытие и подача импульса на транзистор. После запуска преобразователя, противофазные импульсы с обмоток управления трансформатора поступают к транзисторным ключам. Ключи открываются и производят наводку тока в трансформаторных обмотках. Далее напряжение на лампу подается с рабочей обмотки через нити накала установленные последовательно.

Максимальное падение напряжения наблюдается на конденсаторе С5, подключенном непосредственно к лампе. Именно он окончательно зажигает источник света. После запуска преобразователь будет и далее работать в автоматическом режиме. Его частота остается неизменной с момента пуска устройства.

Подключение светильника к ЭПРА

Нередко домашние мастера самостоятельно улучшают работу люминесцентных ламп путем замены устаревшей пускорегулирующей аппаратуры на более современное электронное устройство. На начальном этапе светильник демонтируется и из него вынимаются все детали. Новая электронная аппаратура должна соответствовать размерам улучшаемого светильника.

Читайте также:  Стальные трубы для отопления и их особенности

Сам процесс подключения выполняется сравнительно легко, поскольку в светильнике будут размещаться лишь лампы, провода и схема ЭПРА. В корпусе светильника должно быть достаточно места для размещения электронного блока, он должен легко подключаться к клеммам, расположенным на корпусе. Крепление выполняется с помощью саморезов, после чего производится соединение между собой аппаратуры, проводов и люминесцентной лампы.

Подключение двух ламп осуществляется таким же образом, с использованием последовательной схемы. Соответственно, мощность ЭПРА должна в два раза превышать мощность источников света. По такому же принципу подключается три и более ламп в общем корпусе.

После подключения остается лишь проверить работоспособность схемы и убедиться, что лампы работают по новому. Как правило, включение происходит мгновенно, без предварительного разогрева, отсутствует гудение и пульсация света, яркость свечения заметно возрастает.

В случае правильного подключения увеличивается срок эксплуатации светильника, снижается расход электроэнергии.

Преимущества и недостатки ЭПРА

Применение электронных балластов вносит существенные положительные изменения в работу люминесцентных осветительных приборов. Основными достоинствами ЭПРА являются следующие:

  • Максимальная мощность света заметно увеличивается при одновременном снижении объема электроэнергии, потребляемой блоком питания.
  • Отличительная черта старых люминесцентных ламп – мерцание – полностью отсутствует.
  • Практически не слышно шума и гудения во время работы светильника.
  • Увеличение срока эксплуатации люминесцентных ламп.
  • Удобные настройки и управление яркостью светового потока.
  • На светильники с электронной аппаратурой совершенно не влияют скачки и перепады напряжения в питающей сети.

Основным минусом ЭПРА считается их высокая стоимость по сравнению с электромагнитными устройствами. В настоящее время новейшие технологии в этой области постоянно развиваются и совершенствуются. В связи с этим, цена электронных изделий постепенно приближается к стоимости старой аппаратуры.

Неисправности и ремонт ЭПРА

Люминесцентные лампы периодически ломаются и перестают работать по разным причинам. Это может быть дроссель или стартер и даже сам балласт. Поэтому одним из действий по выявлению неисправности является проверка ЭПРА. Для выполнения проверки своими руками потребуется обычная переноска, то есть лампа накаливания с проводами. Концы жил соединяются с канцелярскими скрепками и получается самый простой тестер.

Дальнейшие действия выполняются в следующем порядке:

  • Светильник нужно обесточить, снять прозрачную крышку и вынуть люминесцентную лампу из патронов.
  • Изогнутая скрепка вставляется в патрон, при этом, оба контакта должны быть замкнуты. В другой патрон вставляется вторая скрепка и таким образом провода от переноски оказываются соединенными с контактами.
  • На светильник подается напряжение. Если балласт исправен, то лампочка на переноске должна загореться. В противном случае электронный балласт придется менять.

Замена ЭПРА не представляет каких-либо сложностей. У приобретаемого устройства должны быть точно такие же пусковые характеристики, как и у предыдущего. Основное условие заключается в точном соблюдении схемы подключения. Все соединения выполняются методом пайки или через разъемные контакты. Основной причиной выхода из строя электронной пускорегулирующей аппаратуры является использование производителями самых простейших схем с целью уменьшения их размеров.

Нормальная схема не всегда помещается вовнутрь, поэтому приходится использовать различные технические решения. В противном случае, светильник после ремонта прослужит совсем недолго. Кроме того, при отсутствии опыта работы с такими устройствами, рекомендуется обратиться к квалифицированным специалистам.

Эксплуатация и ремонт электромагнитных реле

Реле имеет ограниченный ресурс это связано в первую очередь из-за принципа его работы: электромеханическое реле функционирует за счет работы магнитного поля и замыкания механических контактов. Механические контакты изнашиваются, катушка сгорает, отсюда и возникает необходимость его ремонта. Чаще всего ремонт заключается в чистке контактов или решении проблем с катушкой.

Содержание статьи

Конструкция и типовые проблемы

Прежде чем перейти к вопросам ремонта, давайте пройдемся по составным частям электромагнитного реле. Реле само по себе сравнивает величины управляющего воздействия, после чего происходит передача сигнала в управляемые цепи.

В нашем случае на катушку подаётся электрический ток. Якорь притягивается к сердечнику катушки за счет магнитного усилия созданного магнитным потоком.

Реле срабатывает в том случае если подано достаточное напряжение и ток. При срабатывании электромагнита замыкаются контакты. Контактов может быть несколько групп, а также пары нормально-замкнутых и нормально-разомкнутых контактов.

На фото изображено реле МКУ-48, в нижней части которого расположена катушка, подсоединенная проводами к клеммам. В верхней части вы видите набор токопроводящих пластин в составе контактной группы.

Катушка наматывается на каркасе, в ней располагают магнитопровод. Крепится катушка на нем разными методами, например за счет медной пластины, фасонной пластинки, шайб медных и изоляционных.

Конструкций реле может быть великое множество, но основные ответственные узлы одни и те же:

2. Контактные группы.

Их взаимное расположение, траектория движения, их количество может существенно отличаться.

Читайте также:  Установка точечных светильников в панели ПВХ: порядок монтажа

Проблема 1 – контакты

Пожалуй, на первом месте в проблеме функционирования всех коммутационных аппаратов является нагар или износ контактов. Для повышения долговечности и снижения контактного сопротивление они могут быть покрыты дорогими металлами, типа серебра, золото или платины.

Но ресурсы всех механических частей ограничены числом срабатываний. Кроме ударной нагрузки, которая возникает при их замыкании, контакты разрушаются от искр и дуг, которые непременно образуются при включении хоть сколько-нибудь мощных электроцепей, особенно если в их составе есть индуктивность или емкость.

Наверняка вы замечали, что когда вы включаете зарядное от смартфона или ноутбука в розетку проскакивает сноп искр, так вот это и есть процесс заряда входной ёмкости. От таких вспышек на контактах образуется нагар.

Если в розетке, благодаря её конструкции он не так страшен – ведь вы, вставляя и вынимая вилку, счищаете малую часть сажи, то в реле нагар накапливается, рано или поздно сопротивление контактов возрастает, они начинают сильнее греться, отсюда получается еще больше нагара.

Следующий этап, это либо выгорание контактных пластин или деталей корпуса реле (автомата, пускателя…), либо, в лучшем случае, ток просто перестанет протекать через реле.

В таком случае нужно восстановить контакты. В простейших случаях нужно почистить их ластиком. Вообще контакты чистят спиртом зубной щеткой, или ватной палочкой, или бумажкой смоченной в спирте, если расстояние между контактами маленькое, а после высыхания шлифуют замшей. После этого стоит усилить прижим контактов, если он ослабился и если есть возможность регулировки.

Но, если они обгорели достаточно сильно, а на замену поставить нечего, можно чистить их стеклянной бумагой или мелкой наждачкой. Только долговечность такого ремонта зависит от остаточного состояния контактов.

Здесь нужно счистить нагар и выровнять контактную площадку, при этом не оставить царапин и не снять слой металла. При этом плоскости контактов должны при их замыкании максимально друг к другу прилегать. От площади соприкосновения зависит переходное сопротивление и нагрев контактов при прохождении тока.

Про то, как избавиться от искрения контактов реле у нас на сайте есть отдельная статья: Причины возникновения и способы устранения искрения контактов реле и пускателей

Проблема 2 – катушка

Магнитный поток, который возникает вокруг катушки, захватывает окружающие пространство и механизмы реле, происходит движение якоря и срабатывание контактов. Этого не произойдет, если катушка сгорела. Давайте рассмотрим частые проблемы с электромагнитной системой реле.

1. Обрыв провода обмотки в месте соединения (пайки) с клеммой. Возникает из-за вибраций, повышенном значении тока в катушке, коррозии и окисления.

2. Межвитковое замыкание. При такой неисправности характерен повышенный нагрев катушки, плохая подтяжка якоря и прижим контактов, повышенный гул (следствие возросшего тока), вибрации корпуса.

3. Обрыв провода в самой катушке.

Симптомы

Мы рассмотрели основные причины поломки реле. Их не так уж и много. Однако симптомов этих неисправностей больше. Чтобы правильно поставить диагноз и решить проблему нужно понять их причину. Давайте теперь поговорим о том, как они проявляются на практике.

Почему реле громко гудит

Межвитковое замыкание это локальное повреждение изоляции обмоточного провода катушки и прохождение тока напрямую через какую-то часть витков. Т.е. ток течет не по длине витка, а в точке, от одной массы проводника, к другой. Ток в таком случае может возрастать.

Тогда реле работает не в номинальном режиме, магнитный поток может отклоняться от необходимой величины в большую и меньшую сторону, это вызывает нестабильность положения якоря, вибрации в магнитопроводе, шихтованном железе. Особо заметен этот дефект на реле переменного тока, которые всегда слегка гудят, то при подобной проблеме они начинают сильно вибрировать, а их гул усиливается в разы.

Внешне проявляться это может как потемнения на отдельных участках катушки. Дальнейшая работа реле с таким дефектом приведет к тому, что в месте межвиткового замыкания будет происходить усиленный нагрев, со временем катушка перестанет функционировать, вариантов развития ситуации два:

1. Хороший – в катушке перегорит часть витков, и цепь будет разорвана, от образовавшейся гари ток перестанет протекать. Тогда магнитопровод и шасси катушки останутся целыми. В таком случае достаточно найти такую же катушку и произвести её замену. Для этого реле разбирается не полностью, а только в тех местах, где это необходимо, например в РВП катушка снимается с шасси и заменяется без каких – либо проблем.

2. Плохой вариант – реле нагревается и от высокой температуры происходит возгорание обмоток и изоляторов, в результате чего повреждается магнитопровод. Если он подвижный, как на фото выше, то дальнейшая его работа может быть нарушена или невозможна вообще, тогда кроме катушки нужно найти и магнитопровод, в таком случае проще поменять реле полностью, а сгоревшее оставить на запчасти, если контактные группы в нем уцелели.

Читайте также:  Усадка деревянного дома из оцилиндрованного бревна

Кроме самого реле это может повлечь за собой и дальнейшие проблемы в виде пожара. Поэтому если реле начало сильно гудеть – не откладывайте его осмотр на потом.

Катушку можно перемотать, обмоточные данные могут быть указаны на этикетке, которая опоясывает катушку. На фото ниже вы видите, какая может быть указана информация:

Теперь нужно удалить этикетку и посмотреть: может повреждение таится на поверхности? Тогда вы можете смотать немного провода, устранить проблему (заизолировать и спаять) и домотать обратно. Если на поверхности не видно дефектов, тогда нужно срезать или сматывать всю обмотку искать неисправность. Если она существенная – перематывать новым проводом.

Если такая этикетка сгорела, или повреждена нужно попробовать установить реле на обмоточный станок и размотать его вручную сосчитав число витков.

Трещит реле

Реле может трещать при плохом прижиме контактов, у такой проблемы есть три причины:

1. Износ контактов.

2. Разрегулировка прижимной пластины.

3. Недостаточный ток катушки.

У первых двух проблем больше механическое происхождение. Если контакты износились, они могут искрить и трещать. Тогда их нужно заменить. Если заменить нечем, можно попробовать их отшлифовать и выровнять.

Нужно добиться чтобы площадь соприкосновения была не меньше чем 2/3 от общей площади, чтобы это проверить, берут копировальную бумагу и прикладывают к обычной бумаге, после чего делают отпечаток контакта.

Натяжение (упругость пластин на которых расположены контакты) проверяют динамометром (в теории), на практике же, просто отгибают контакт и смотрят как он вернулся назад, если отгибался он слабо, и возвращался вяло – значит нужна регулировка. Если отгибался туго, а возвращался со щелчком – значит всё хорошо.

Если ток катушки малый реле тоже будет трещать. Дело в том, что тогда магнитное поле получается слабым и прижимная сила на контактах тоже. Ток катушки может быть малым из-за просадок напряжения, а также из-за проблем с проводкой. Возможно, где-то есть потери на соединениях, осмотрите все соединения и клеммы.

Реле залипает

Вы отключили цепь, а реле осталось в активном положении, при этом так происходит через раз, т.е. проблема не имеет устойчивого характера:

Причин может быть три:

1. Плохой контакт.

2. Влияние окружающей среды

3. Механическая неисправность.

4. Проблемы в проводке.

Плохое состояние контактов, как я уже неоднократно сказал, – причина нагрева, так вот нагрев может стать причиной залипания контактов. Контакты разогреваются до такой степени, что поверхность металла слипается.

Проверьте чистоту корпуса реле, и что внутри него, может быть, там поселилась какая-то живность, или его чем-то залили. Вполне вероятно природное происхождение проблемы, тип гнезда пауков в электрощите или чего-то подобного.

Если корпус реле в чем-то липком, то проверьте, нет ли этого вещества внутри, может быть это и есть причина залипания контактов. Ну и последний «природный» вариант – может оно замерзло?

Проверьте напряжение на контактах реле, возможно просто где-то есть утечка, и реле остается под напряжением и его контакты не разъединяются.

Реле не срабатывает

Обмотка катушки выполняется тонким медным эмалированным проводом. Толщина провода может быть в районе 0.07 мм и выше. От толщины провода и длины обмотки зависит мощность включения реле и ток необходимый для замыкания контактов.

Для подключения реле к другим устройствам на его нижней части (часто, но не обязательно на нижней) расположены клеммы или другие виды контактов. Простейшая проблема – это когда один из концов катушки отпаивается от этой клеммы.

В таком случае достаточно просто припаять конец катушки. Будьте аккуратны, когда будете зачищать провод от эмали, вы можете переломить его, и он в скором времени отвалится.

Возможно реле не срабатывает, потому что катушка оборвана. Обрыв может быть на поверхности, а может быть и в середине, тогда порядок действий такой же, как и в случае с межвитковыми:

1. Вытащить катушку.

2. Снять с неё оболочку.

3. Проверить обрыв на поверхности, если нет размотать поискать внутри.

4. Спаять место обрыва и заизолировать.

5. Собрать катушку.

Проверка реле

Быструю проверку реле можно выполнить прозвонкой или мультиметром. Для этого прозвоните контакты катушки, цепь должна быть замкнутой, если прозвонка не сработала – значит, катушка не в обрыве.

Следующий шаг проверить нормально-замкнутые контакты, когда на реле нет напряжения, они должны быть замкнуты, сопротивление стремиться к нулю, а прозвонка должна сработать. Подайте напряжение на обмотку и проверьте также нормально-разомкнутую пару. Она должна сомкнуться.

Более точную проверку можно провести мегомметром. Нужно прозвонить сопротивление между независимыми группами контактов, оно должно быть большим, конкретно, сколько написано в технических характеристиках коммутационного прибора, вообще от 1 МОм и выше. Также проверить сопротивление между катушкой и магнитопроводом, якорем. Оно тоже должно быть большим. В противном случае реле не будет функционировать правильно.

Читайте также:  Установка точечных светильников в панели ПВХ: порядок монтажа

Ремонт катушек электромагнитных реле и пускателей

В процессе эксплуатации катушки различных электрических аппаратов повреждаются: наблюдаются обрывы провода, появление витковых замыканий, обугливание изоляции.

Обрыв тонкого (0,07 – 0,1 мм) обмоточного провода, чаще всего происходящий в месте пайки проводов, может возникнуть из-за неаккуратной зачистки эмали провода ножом, ножницами или другими острыми предметами (надрез провода), применения для пайки провода различных мазей, составов, разъедающих впоследствии медный проводник (коррозия провода), и др.

Витковые замыкания в катушках происходят от разрушения эмалевого покрытия, которое возникает вследствие заводского дефекта проводника либо при превышении температуры катушки сверх допустимой (например, при неправильном расчете катушки или ошибочном включении ее на повышенное напряжение).

Витковые замыкания, происходящие в процессе эксплуатации, зачастую приводят к разрушению не только всей обмотки, но и к разрушению каркаса.

Вывести катушку из строя могут и различные механические повреждения изоляции при сборке и разборке магнитопроводов.

При обнаружении повреждения катушки (обрыв, короткозамкнутые витки и т. п.) она снимается с магнитопровода и ремонтируется.

Катушку с обрывом провода, прежде чем подвергнуть срезке или размотке, необходимо внимательно осмотреть, снять внешнюю изоляцию и убедиться, что обрыв произошел не у наружного вывода. В противном случае целость катушки легко восстановить, произведя пайку оборванного конца провода к выводу и изолировав место пайки.

Если же обрыв произошел где-то внутри обмотки, катушка разматывается до нахождения обрыва, после чего проверяется целость оставшейся неразмотанной обмотки, и если оставшаяся часть не повреждена, производят пайку, изолируют ее и доматывают смотанную часть витков новым проводом того же диаметра.

При нахождении обрыва, близко расположенного к началу обмотки, катушку перематывают вновь, чтобы исключить лишние пайки, снижающие надежность обмотки.

В случае повреждения только обмотки катушка снимается с магнитопровода таким образом, чтобы не повредился каркас, затем, если сохранена этикетка катушки или известно число витков и диаметр провода, вся обмотка может быть срезана (если она пропитана лаком или компаундом) или размотана.

Пропитанные лаком или компаундом обмотки с диаметром провода более 0,3 мм невозможно снять с прессованного каркаса, не попортив его. Такая катушка полностью заменяется новой.

Сборный каркас, если он выполнен без “заплечиков”, легко разбирается без снятия поврежденной обмотки. Освобожденные детали каркаса могут быть снова собраны, и каркас вновь готов к намотке.

Поврежденная катушка, этикетка которой не сохранилась и данные которой неизвестны, аккуратно закрепляется на шпинделе намоточного станка и разматывается вручную. Счетчик, установленный на станке, покажет количество витков, а диаметр провода замеряется микрометром.

При повреждении каркаса его изготавливают вновь. Выводы катушки, по возможности, сохраняются прежними.

Для того чтобы снять поврежденные катушки, в большинстве случаев приходится разбирать магнитопроводы. Для реле, работающих на постоянном токе, применяются магнитопроводы сплошные, изготавливаемые из полосового или круглого материала — конструкционной стали, железа, круглой кремнистой стали. Для реле, работающих на переменном токе, применяются шихтованные магнитопроводы, представляющие собой склепанные пакеты из стали различных марок.

Магнитопровод состоит из сердечника, на который насаживается катушка, подвижного якоря и ярма.

Крепление катушек на магнитопроводе осуществляется различными способами. Наиболее простым является крепление с помощью полюсного наконечника в системах постоянного тока (например, электромагнитных реле типа РП-23).

В промежуточных реле типа РП-250 (кодовых реле) катушки крепятся на сердечниках либо с помощью фасонной пластинки, удерживающей якорь на ярме магнитопровода, либо с помощью специальных шайб медной и изоляционной, устанавливаемых на сердечнике.

В реле типа МКУ установленная на сердечнике катушка закрепляется специальной пластинкой, которая для системы переменного тока изготавливается из меди и является короткозамкнутым витком.

В системах переменного тока с шихтованными сердечниками катушки могут крепиться как с помощью короткозамкнутых витков – реле типов МКУ, РП-25. ПР-321, РП-341, РП-210 и т. п., так и с помощью металлических пластин, склепанных с сердечником и отогнутых после установки катушки (некоторые типы магнитных пускателей).

Встречаются магнитопроводы, на сердечнике которых катушка удерживается плотной насадкой или расклинивающими пластинками из слоистого пластика, а в некоторых случаях из фосфористой бронзы.

Независимо от крепления катушек при замене их на новые приходится в той или иной степени разбирать реле или другой аппарат. Разборке подлежат только те элементы, которые мешают снять катушку.

После установки новой катушки на сердечник, закрепления ее и сборки магнитопровода производится механическая регулировка реле.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: