Схема работы устройства плавного пуска, его назначение и конструкция
- О проекте
- Главная
- О проекте
- Карта сайта
- Вопрос-ответ
- ПЧ и УПП
- Терминология
- Низковольтные ПЧ
- Высоковольтные ПЧ
- Низковольтные УПП
- Высоковольтные УПП
- Станции управления
- Аксессуары
- Теория
- Подбор ПЧ и УПП
- Монтаж ПЧ и УПП
- Энергосбережение
- Терминология
- Пресс-центр
- Новости сайта
- Интервью
- Статьи
- Мероприятия
- Акции
- Обзор рынка
- Производители
- ABB
- Advanced Control Indastrial Equipment
- AuCom Electronics Ltd
- B&R
- Baumuller
- Bosch Rexroth
- Control Techniques
- Danfoss
- Delta Electronics
- Easy Drive
- Eaton
- EKF
- Emotron AB
- ERMAN
- ESQ
- EURA Drives
- Fuji Electric
- GE
- Gefran Siei
- Grandrive
- Hitachi
- Hyundai Heavy Industries
- IC Electronics
- IDS Drive
- IEK
- INNOVERT
- Inovance
- INSTART
- Invertek drivers
- Invt
- Jacky Enterprise
- Keb
- Lenze
- LS
- Micno
- Mitsubishi Electric
- Omron
- ONI
- Parker
- Powtran
- Prostar
- Rockwell Automation
- Santerno
- Schneider Electric
- Sew Eurodrive
- Siemens
- Tecorp Electronics
- Toshiba
- Vacon
- Weg
- Yaskawa
- Битек
- Веспер Автоматика
- Вниир
- Горнозаводское Объединение
- Ижевский Радиозавод
- Овен
- Оптимэлектро
- Приводная техника
- Русэлком
- Силиум
- Стройтехавтоматика
- Технорос
- Триол
- ЧЭАЗ-ЭЛПРИ
- ЭКРА
- Электровыпрямитель
- Электрозавод
- Электротекс
- Элсиэл
- Эрасиб
- Эффективные Системы
- Серии
- Рынок
- Производители
- Купить
- Поставщики
- КосПА
- ONI
- СТОИК
- Danfoss
- Веспер
- EKF
- Инжиниринг
- Поставщики
- Библиотека
- Каталоги
- ГОСТ и ТУ
- Видео
- Контакты
- Обратная связь
- Сотрудничество
- Реклама на сайте
- Вакансии
- Ответственность
О проекте О проекте
- Главная
- О проекте
- Карта сайта
- Вопрос-ответ
ПЧ и УПП ПЧ и УПП
Терминология Терминология
- Низковольтные ПЧ
- Высоковольтные ПЧ
- Низковольтные УПП
- Высоковольтные УПП
- Станции управления
- Аксессуары
- Теория
- Подбор ПЧ и УПП
- Монтаж ПЧ и УПП
- Энергосбережение
Пресс-центр Пресс-центр
- Новости сайта
- Интервью
- Статьи
- Мероприятия
- Акции
Обзор рынка Обзор рынка
Производители Производители
- ABB
- Advanced Control Indastrial Equipment
- AuCom Electronics Ltd
- B&R
- Baumuller
- Bosch Rexroth
- Control Techniques
- Danfoss
- Delta Electronics
- Easy Drive
- Eaton
- EKF
- Emotron AB
- ERMAN
- ESQ
- EURA Drives
- Fuji Electric
- GE
- Gefran Siei
- Grandrive
- Hitachi
- Hyundai Heavy Industries
- IC Electronics
- IDS Drive
- IEK
- INNOVERT
- Inovance
- INSTART
- Invertek drivers
- Invt
- Jacky Enterprise
- Keb
- Lenze
- LS
- Micno
- Mitsubishi Electric
- Omron
- ONI
- Parker
- Powtran
- Prostar
- Rockwell Automation
- Santerno
- Schneider Electric
- Sew Eurodrive
- Siemens
- Tecorp Electronics
- Toshiba
- Vacon
- Weg
- Yaskawa
- Битек
- Веспер Автоматика
- Вниир
- Горнозаводское Объединение
- Ижевский Радиозавод
- Овен
- Оптимэлектро
- Приводная техника
- Русэлком
- Силиум
- Стройтехавтоматика
- Технорос
- Триол
- ЧЭАЗ-ЭЛПРИ
- ЭКРА
- Электровыпрямитель
- Электрозавод
- Электротекс
- Элсиэл
- Эрасиб
- Эффективные Системы
- Серии
- Рынок
Купить Купить
Поставщики Поставщики
- КосПА
- ONI
- СТОИК
- Danfoss
- Веспер
- EKF
- Инжиниринг
Библиотека Библиотека
- Каталоги
- ГОСТ и ТУ
- Видео
Контакты Контакты
- Обратная связь
- Сотрудничество
- Реклама на сайте
- Вакансии
- Ответственность
- Главная
- ПЧ и УПП
- Теория
Данный раздел посвящен теоретическим основам частотного регулирования и принципам работы устройства плавного пуска.
Принцип работы преобразователя частоты
Частотный преобразователь – устройство, позволяющее осуществлять регулирование скорости вращения электродвигателей посредством изменения частоты электрического тока.
Для понимания процесса частотного регулирования для начала необходимо вспомнить из курса электротехники принцип работы асинхронного электродвигателя.
Вращение вала электродвигателя происходит за счет магнитного поля создаваемого обмотками статора. Синхронная частота вращения магнитного поля зависит от частоты напряжения питающей сети f и выражается следующей зависимостью:
где p – число пар полюсов магнитного поля.
Под действием нагрузки частота вращения ротора электродвигателя несколько отличается от частоты вращения магнитного моля статора вследствие скольжения s:
Следовательно частота вращения ротора электродвигателя представляет собой зависимость от частоты напряжения питающей сети:
Таким образом требуемую частоту вращения вала электродвигателя n p можно получить путем изменения частоты напряжения сети f. Скольжение при изменении частоты вращения не увеличивается, а соответственно потери мощности в процессе регулирования незначительны.
Для эффективной работы электропривода и обеспечения максимальных значений основных характеристик электродвигателя требуется вместе с частотой изменять и питающее напряжение.
Функция изменения напряжения в свою очередь зависит от характера момента нагрузки. При постоянном моменте нагрузки M c = const напряжение на статоре должно регулироваться пропорционально частоте:
Для случаев вентиляторного режима:
При моменте нагрузки, обратно пропорциональном скорости:
Таким образом, плавное регулирование частоты обеспечивается одновременным регулированием частоты и напряжения на статоре асинхронного двигателя.
Рис 1. Схема частотного преобразователя
На рис. 1. представлена типовая блок-схема низковольтного преобразователя частоты. В нижней части рисунка для каждого блока наглядно изображены графики входных и выходных напряжений и токов.
Сначала напряжение сети (UBX) поступает на вход выпрямителя (1). Далее для сглаживание выпрямленного напряжения (UВЫПР) применяется конденсаторный фильтр (2). Затем уже постоянное напряжение (Ud) подается на вход инвертора (3), где происходит преобразование тока из постоянного обратно в переменный, формируя тем самым выходной сигнал с необходимыми значениями напряжения и частоты. Для получение сигнала синусоидальной формы применяются сглаживающий фильтр (4)
Для более наглядного понимания принципа работы инвертора рассмотрим принципиальную схему частотного преобразователя на рис. 2
Рис. 2 – принципиальная схема низковольтного преобразователя частоты
В основном в инверторах применяется метод широтно-импульсной модуляции (ШИМ). Принцип данного метода заключается в попеременном включении и выключении ключей генератора, формируя импульсы различной длительности (рис. 3). Синусоидальный сигнал получается за счет индуктивности двигателя или применения дополнительного сглаживающего фильтра.
Рис. 3. Выходной сигнал преобразователя частоты
Таким образом, управляя процессом включения-выключения инверторных ключей, мы можем формировать выходной сигнал нужной частоты, а следовательно управлять технологическими параметрами механизма путем изменения частоты вращения привода.
Теория и принцип работы устройства плавного пуска
В связи с особенностями переходных процессов происходящих во время пуска электродвигателя токи обмоток достигают 6-8 кратной величины номинального тока электродвигателя, а вращающий момент на его валу достигает 150-200% от номинального значения. Как следствие это увеличивает риск поломки механической части двигателя, а также приводит к падению напряжения питающей сети.
Для решение данных проблем на практике применяется устройства плавного пуска электродвигателей, обеспечивающие постепенное увеличение токовой нагрузки.
Помимо снижения токовых нагрузок мягкие пускатели позволяют: .
- Снизить нагрев обмоток двигателя;
- Снизить просадки напряжения во время пуска;
- Обеспечить торможение и последующий запуск двигателя в установленный момент времени;
- Снизить гидроудары в напорных трубопроводах при работе в составе привода насоса;
- Снизить электромагнитные помехи;
- Обеспечить комплексную защиту электродвигателя при пропадании фазы, перенапряжении, заклинивании и пр;
- Повысить надежность и долговечность системы в целом.
Принцип работы УПП
Типовая схема устройства плавного пуска представлена на рис. 1
Рис. 1. Типовая схема устройства плавного пуска
Изменением угла открытия тиристоров осуществляется регулирования выходного напряжения УПП. Чем больше угол открытия тиристора – тем больше величина выходного напряжения, питающего электродвигатель.
Рис. 2. Формирование выходного напряжения УПП
Принимая во внимание то что величина крутящего момента асинхронного электродвигателя пропорциональна квадрату напряжения, то снижение напряжения снижает величину вращающего момента вала двигателя. При помощи такого метода пусковые токи электродвигателя снижаются до величины 2. 4 IНОМ, при этом время разгона несколько увеличивается. Наглядное изменение механической характеристики асинхронного электродвигателя при понижении напряжении показано на рис. 3
Рис 3. Механические характеристика двигателя
Снижение токовой нагрузки в процессе мягкого пуска электродвигателя наглядно показаны на рис. 4.
Рис. 4. Диаграмма плавного пуска асинхронного электродвигателя показана
На рис. 1. продемонстрирована типовая схема устройства плавного пуска однако стоит отметить, что реальная схема мягкого пускателя будет завесить в первую очередь от условий его эксплуатации. Например, для бытового бытовой инструмента и электродвигателя привода промышленной дробилки требуются различные устройства плавного пуска. Важнейшими параметрами, определяющими режимы работы устройств плавного пуска, являются время пуска и максимальное превышение по току.
В зависимости от этих параметров выделяют следующие режимы работы устройств плавного пуска:
- Нормальный: пуск 10-20 секунд, ток при пуске не более 3,5 Iном.
- Тяжелый: пуск порядка 30 секунд, тока при пуске не превышает 4,5 Iном
- Сверхтяжелый: время разгона не ограничено, системы с большое инерцией, пусковой ток в диапазоне 5,5…8 Iном
Устройства плавного пуска можно разделить на следующие основные группы:
1. Регуляторы пускового момента
Данный тип устройств осуществляет контроль только одной фазы трехфазного двигателя. Контроль одной фазой дает возможность снижать пускового момент электродвигателя двигателя, но при этом снижение пускового тока происходит незначительное. Устройства данного типа не могут применяться для уменьшения токовых нагрузок в период пуска, а также для пуска высокоинерционных нагрузок. Однако они нашли применение в системах с однофазными асинхронными электродвигателями.
2. Регуляторы напряжения без обратной связи
Данный тип устройств работает по следующему принципу: пользователь задает величину начального напряжения и время его нарастания до номинальной величины и наоборот. Регуляторы напряжения без обратной связи могут осуществлять контроль как двух так и трех фаз электродвигателя. Такие регуляторы обеспечивают снижение пускового тока снижением напряжения в процессе пуска.
3. Регуляторы напряжения с обратной связью
Данный тип УПП представляет собой более совершенную модель описанного выше устройств. Наличие обратной связи по позволяет управлять процессом увеличения напряжения добиваясь оптимального режима пуска электродвигателя. Данные о токовой нагрузке позволяет также организовать комплексную защиту электродвигателя от перегрузки, перекоса фаз и т.п.
4. Регуляторы тока с обратной связью
Регуляторы тока с обратной связью представляют собой наиболее совершенные устройства плавного пуска. Принцип работы основан на прямом регулировании тока а не напряжения. Это позволяет добиться наиболее точное управление пуском электродвигателя, а также облегчает настройку и программирование УПП.
Схема работы устройства плавного пуска, его назначение и конструкция
Электрические двигатели являются простыми и надежными машинами, но имеют и некоторые недостатки, которые усложняют их использование. В частности, при запуске такие устройства имеют высокие значения потребляемого тока и без специальных устройств запускаются с рывком из-за несогласованности крутящего момента двигателя и нагрузки на его валу. Дополнительными приборами, которые обеспечивают плавную работу двигателя при запуске и позволяют снизить пусковые токи называют устройствами плавного пуска.
Что такое устройство плавного пуска
Устройство плавного пуска (УПП) – это электротехнический прибор, который применяется в работе асинхронных двигателей и позволяет контролировать и управлять его запуском и параметрами для безопасной работы в сети переменного тока. Такое устройство снижает воздействие на двигатель ряда негативных факторов, в том числе уменьшает вероятность повышенного нагрева двигателя, устраняет рывки, обеспечивая плавный запуск и выход на рабочую нагрузку. Также устройства плавного пуска снижают негативное влияние на электрическую сеть посредством уменьшения пусковых токов электродвигателя.
Часто устройство плавного пуска электротехнические специалисты и люди, связанные с работой электродвигателей, называют такие приборы «мягкими пускателями». Это связано с тем, что на английском языке (а большинство качественных устройств – импортного производства) эти устройства называются «soft starter», что и означает «мягкий пускатель».
Плавный пуск электродвигателей с помощью преобразователей частоты и мягких пускателей позволяет решать большое количество задач и управлять работой электродвигателя в широких пределах его параметров. Особенно часто УПП применяют при работе в условиях тяжелого пуска (с большой инерцией или запуском под нагрузкой с четырехкратными пусковыми токами, с разгоном двигателя не менее 30 секунд) и особо тяжелого пуска (при шести или восьмикратных значения пусковых токов и большим временем разгона двигателя).
Способы плавного пуска асинхронных двигателей
Кроме негативного влияния на цепи питания и окружение, стартовый импульс электродвигателя вреден и для его обмоток статора, ведь момент увеличенной силы при запуске прикладывается к обмоткам. То есть, сила рывка ротора усиленно давит на обмоточные провода, тем самым убыстряя износ их изоляции, пробой которой называют межвитковым замыканием.
Иллюстрация принципа действия асинхронного электродвигателя
Поскольку конструктивно нельзя уменьшить пусковой ток, придуманы способы, схемы и аппараты, обеспечивающие плавный пуск асинхронного двигателя. В большинстве случаев, на производствах с мощными линиями питания и в быту данная опция не является обязательной – так как колебания напряжения и пусковые вибрации не оказывают существенного влияния на производственный процесс.
Графики изменения токов при прямом запуске и при помощи устройств плавного пуска
Но существуют технологии, требующие стабильных, не превышающих норм параметров, как электроснабжения, так и динамических нагрузок. Например – это может быть точное оборудование, работающее в одной сети с чувствительными к напряжению потребителями электроэнергии. В этом случае, для соблюдения технологических норм для мягкого запуска электродвигателя применяют различные способы:
- Переключение звезда – треугольник;
- Запуск при помощи автотрансформатора;
- устройства плавного пуска асинхронного двигателя (УПП).
В приведенном ниже видео перечислены основные проблемы, возникающие при запуске электродвигателя, а также описаны достоинства и недостатки различных устройств плавного пуска асинхронных электродвигателей с короткозамкнутым ротором.
По-иному УПП еще называют софт стартерами, от английского «soft» – мягкий. Ниже будут кратко описаны виды и предлагаемые опции в широко распространенных УПП (софт стартерах). Также вы можете ознакомиться с дополнительными материалами по устройствам плавного пуска
Промышленные софт стартеры для электродвигателей различной мощности
Ознакомление с принципом плавного запуска
Для того, чтобы осуществить плавный пуск асинхронного электродвигателя максимально эффективно и с минимальными затратами, приобретая готовые софт стартеры, необходимо прежде ознакомиться с принципом действия подобных устройств и схем. Понимание взаимодействия физических параметров позволит сделать оптимальный выбор УПП.
При помощи устройств плавного пуска можно добиться снижения пускового тока до значения трехкратного превышения номинального (вместо семикратной перегрузки)
Для плавного пуска асинхронного электродвигателя необходимо уменьшить пусковой ток, что позитивно скажется как на нагрузке электросети, так и на динамических перегрузках обмоток двигателя и приводных механизмов. Достигают уменьшения пускового тока, снижая напряжение питания электродвигателя. Заниженное пусковое напряжение используется во всех трех предложенных выше способах. Например, при помощи автотрансформатора пользователь самостоятельно занижает напряжение при запуске, поворачивая ползунок.
Понижая напряжение на старте можно добиться плавного запуска електродвигателя
При использовании переключения «звезда-треугольник» меняется линейное напряжение на обмотках электродвигателя. Переключение осуществляется при помощи контакторов и реле времени, рассчитанное на время запуска электродвигателя. Подробное описание плавного пуска асинхронного электродвигателя при помощи переключения «звезда-треугольник» имеется на данном ресурсе по указанной ссылке.
Схема переключения «звезда-треугольник» с использованием контакторов и реле времени
Теория осуществления плавного запуска
Для понимания принципа плавного старта необходимо понимание закона сохранения энергии, необходимой для раскрутки вала ротора электромотора. Упрощенно можно считать энергию разгона пропорциональной мощности и времени, E = P*t, где P – мощность, равная умножению силы тока на напряжение (P = U*I). Соответственно, E = U*I *t. Поскольку для уменьшения пускового момента и снижения нагрузок на сеть необходимо уменьшить стартовый ток I, то сохраняя уровень потраченной энергии нужно увеличить время разгона.
Увеличение времени разгона за счет снижения пускового тока возможно только при небольшой нагрузке на валу. Это является основным недостатком всех УПП
Поэтому для оборудования с тяжелыми условиями старта (большой нагрузкой на валу во время запуска), применяются специальные электродвигатели с фазным ротором. Узнать о свойствах данных двигателей можно из соответствующего раздела в статье на данном ресурсе, перейдя по ссылке.
Звигатель с фозім ротором, необходим для оборудования с тіжелім запуском
Также необходимо учитывать, что во время мягкого запуска происходит увеличенный нагрев обмоток и электронных силовых ключей пускового устройства. Для охлаждения полупроводниковых ключей необходимо использование массивных радиаторов, которые увеличивают стоимость аппарата. Поэтому уместно использование УПП для кратковременного разгона двигателя с дальнейшим шунтированием ключей прямым напряжением сети. Подобный режим (переключение байпас) делает компактней и дешевле электронное устройство плавного пуска асинхронных двигателей, но ограничивает количество запусков в определенном интервале ввиду требуемого времени для охлаждения ключей.
Структурная схема шунтирования силовых полупроводниковых ключей (байпас)
Принцип работы
Главный минус электродвигателей асинхронного типа – это то, что момент силы на валу пропорционален квадрату напряжения, которое приложено к электродвигателю. Это создает сильные рывки при запусках и в момент прекращения работы, что также повышает значения индукционного тока.
Устройства плавного пуска могут быть механическими и электрическими, а также комбинированными сочетая в себе положительные черты обоих устройств.
Механические устройства плавного пуска работают по принципу противодействия резкому увеличению оборотов электродвигателя влияя на его ротор механическим способом при помощи тормозных колодок, различных муфт, противовесов, магнитных блокираторов и прочих механизмов. Такие механизмы в последнее время применяются не часто, так как есть более совершенные устройства электрического управления.
Электрические УПП постепенно повышают ток или напряжение от опорного уровня до максимального, что позволяет плавно наращивать обороты электродвигателя и снизить нагрузки и пусковые токи. Чаще всего электрические устройства плавного пуска управляются электронным способом при помощи компьютерных систем или электронных приборов, что позволяет изменять параметры запуска и контролировать динамические характеристики. Мягкие пускатели позволяют изменять режимы работы электродвигателя в зависимости от приложенной нагрузки и позволяют реализовать ту или иную зависимость между скоростью вращения вала и напряжением.
Основные параметры и характеристики УПП
Ниже в тексте будут приведены схемы аппаратов плавного запуска для изучения и собственноручного изготовления. Для тех, кто не готов осуществить плавный пуск асинхронного электродвигателя своими руками, полагаясь на готовое изделие, будет полезной информация о существующих разновидностях софт стартеров.
Пример аналогово и цифрового УПП, в модульном исполнении (устанавливается на DIN-рейку)
Одним из главных параметров при выборе УПП является мощность обслуживаемого электромотора, выраженная в киловаттах. Не менее важным является время разгона и возможность регулировки интервала запуска. Данными характеристиками обладают все существующие софт стартеры. Более совершенные УПП являются универсальными и позволяют настраивать параметры мягкого запуска в широком диапазоне значений относительно характеристик двигателя и требований технологического процесса.
Пример универсального софтстартера
В зависимости от типа софт стартера в них могут присутствовать различные опции, повышающие функциональность аппарата и позволяющие осуществлять контроль работы электродвигателя. Например, при помощи некоторых УПП возможно осуществление не только плавного запуска электромотора, но и его торможение. Более совершенные софт стартеры осуществляют защиту двигателя от перегрузок и позволяют также регулировать вращательный момент ротора при пуске, останове и работе.
Пример различий в технических характеристиках различных УПП от одного производителя
Разновидности софт стартеров
По способу подключения УПП подразделяются на три вида:
-
Однофазные. Регулируют пусковое напряжение на одной фазе для уменьшения пускового момента. Обладают ограниченной функциональностью и не снижают пусковой ток. В виду удешевления полупроводниковых силовых ключей, однофазные УПП применяются редко.
Структурная схема однофазного УПП
Двухфазные. Осуществляют регулировку пускового тока по двум фазам, что позволяет улучшить динамические характеристики запуска двигателя, но не решают проблему с несимметричной «просадкой» напряжения. Используется в основном радиолюбителями, осуществляющими плавный пуск асинхронного электродвигателя своими руками, схема устройства приведена ниже.
Структурная схема двухфазного УПП
Трехфазные. Дают максимально возможное уменьшение пускового момента, снижая пусковой ток до минимально возможной трехкратной перегрузки. Позволяют осуществлять большой набор функций помимо плавного разгона – регулировку момента, торможение, слежение за параметрами, дистанционное управление, защиту от тепловых перегрузок, и т. д.
Структурная схема трехфазного УПП
УПП своими руками
Для самостоятельного изготовления УПП используемая схема плавного пуска асинхронного двигателя своими руками будет зависеть от возможности и навыков мастера. Самостоятельное смягчение пусковых перегрузок при помощи автотрансформатора доступно практически любому пользователю без специальных знаний, но данный способ является неудобным ввиду необходимости ручной регулировки старта электродвигателя. В продаже можно встретить недорогие устройства плавного запуска, которые придется самостоятельно подключить к электроинструменту, не обладая глубокими познаниями в радиотехнике. Пример работы до и после софт стартера, а также его подключение показано на видео ниже:
Для мастеров, обладающих общими знаниями в электротехнике, и владеющих практическими навыками электромонтажа подойдет для собственноручного осуществления плавного запуска схема переключения «звезда-треугольник». Данные схемы, несмотря на их солидный возраст, широко распространены и успешно используются по сей день ввиду простоты и надежности. В зависимости от квалификации мастера в сети интернет можно найти схемы УПП для повторения своими руками. Пример схемы относительно простого двухфазного УПП
Современные софт стартеры имеют внутри сложную электронную начинку из множества электронных деталей, работающих под управлением микропроцессора. Поэтому для изготовления аналогичного УПП своими руками по имеющимся в сети интернет схемам необходимо не только мастерство радиолюбителя, но и навыки программирования микроконтроллеров.
Схема подключения электродвигателя к УПП
Для того, чтобы подключить устройство плавного пуска к электродвигателю и питающей сети следует руководствоваться инструкцией на данный тип прибора, там будут указаны все важные аспекты при подключении: последовательность цепи, выводы заземления и нейтрали, а также правильная наладка пуска, разгона и торможения. Но в целом, существуют стандартные способы подключения, которые подходят для большинства устройств плавного пуска.
Каждое УПП имеет контакта на входе и столько же на выходе для подключения фаз, систему управления пуском и остановкой (кнопки ПУСК, СТОП), другие кнопки и контакты управления. К устройству подводят питающие кабели на входные клеммы (обычно это обозначения L1, L2, L3), а от выводных клемм (обозначения T1, T2, T3) подключают электродвигатель. При этом важно подключать УПП к сети через вводной автомат защиты и использовать при подключении двигателя к устройству плавного пуска и самого УПП к сети кабели с номинальным сечением, соответствующем предельному значению тока двигателя.
Устройство плавного пуска электродвигателя: назначение, устройство и принцип работы, преимущества, схема подключения
Устройство плавного пуска – это электронное устройство, которое используется для защиты электродвигателя. Не все электродвигатели оснащены устройствами плавного пуска, но они стали обычным явлением, особенно для электродвигателей мощности и электродвигателей двигателей с большой частотой включений, которые могут быть легко повреждены внезапными скачками пускового тока. В них используются полупроводниковые переключатели для управления напряжением и пусковым током.
Содержание статьи
Одним из самых главных недостатков асинхронных электродвигателей с короткозамкнутым ротором является наличие у них больших пусковых токов. И если теоретически методы их снижения были хорошо разработаны уже довольно давно, то вот практически все эти разработки (использование пусковых резисторов и реакторов, переключение со звезды на треугольник, использование тиристорных регуляторов напряжения и т.д.) применялись очень в редких случаях.
Все резко изменилось в наше время, т.к. благодаря прогрессу силовой электроники и микропроцессорной техники на рынке появились компактные, удобные и эффективные устройства плавного пуска электродвигателей (УПП, motor soft starter, софтстартеры).
Как работают устройства плавного пуска
Устройства плавного пуска – это электронные устройства, предназначенные для плавного пуска асинхронных двигателей переменного тока. Они управляют запуском, постепенно увеличивая напряжение до номинального уровня.
Поскольку ток двигателя пропорционален напряжению питания, устройства плавного пуска значительно ограничивают пусковой ток, и увеличение крутящего момента двигателя постоянно адаптируется к нагрузке ведомого устройства. Это надежно исключает механические удары, а также падения напряжения в питающей сети.
Напряжение питания двигателя уменьшается во время пуска путем изменения угла фазы пуска (тиристора) до начального значения и постепенно увеличивается до полного значения сетевого напряжения с помощью функции линейного изменения с заданным интервалом.
Плавный запуск и остановка экономят приводную систему, обеспечивают бесперебойную работу, сводят к минимуму механические удары и, таким образом, значительно продлевают срок службы оборудования.
С помощью устройства плавного пуска напряжение питания на клеммах двигателя плавно увеличивается до полного напряжения питания, доступного от сети. При торможении все наоборот. Частота вращения вала двигателя не изменяется при использовании устройства плавного пуска, что является его принципиальным отличием от частотного преобразователя. Устройство плавного пуска снижает пусковой ток двигателя с типичных 6-9xIn для прямого пуска до 3-5xIn или меньше. Значение пускового тока можно настроить по мере необходимости.
Только устройство плавного пуска обеспечивает плавное и плавное изменение напряжения и полный контроль над током и крутящим моментом двигателя. Кроме того, устройство плавного пуска защищает двигатель от перегрузок, то есть от перегрева, от обрыва фазы, недопустимого дисбаланса напряжения и тока, а также от короткого замыкания в источнике питания.
Примерами установок с постоянной скоростью, периодически работающих на холостом ходу, являются: приводы металлорежущих и деревообрабатывающих станокв, ленточные пилы, конвейеры, дробилки, мельницы, смесители, прессы, вентиляторы, насосы для наполнения резервуаров и т.п. оборудование.
Система управления фазовой отсечкой и структурная схема 3-фазного устройства плавного пуска с 2-мя управляемыми фазами (с 2-х фазным управлением)
В чем отличие пуска от устройства плавного пуска с пуском от автотрансформатора?
Устройства плавного пуска намного более гибкие, чем пускатели с автотрансформатором, и обеспечивают более плавный пуск, как правило, с меньшими затратами. Пускатели с автотрансформатором не могут адаптироваться к изменяющимся условиям нагрузки (например, обычный пуск и пуск без нагрузки), а пусковой момент не может свободно регулироваться в соответствии с характеристиками двигателя и нагрузки.
Кратковременные скачки и скачки тока по-прежнему происходят на ступенях между напряжениями, и пускатели автотрансформаторами не могут обеспечить плавный останов. Пускатели с автотрансформатором большие и дорогие, особенно если требуется высокий пусковой момент.
Устройства плавного пуска Sirius 3RW30 компании Siemens :
Это компактное устройство плавного пуска со встроенным мониторингом неисправностей и состояния предлагает множество возможностей диагностики. Три светодиода и релейные выходы позволяют наблюдать за приводом и по-разному его диагностировать, поскольку они предоставляют информацию о рабочем состоянии, неисправностях сети или фазы, отсутствии нагрузки, недопустимой настройке времени и класса отключения, тепловой перегрузке или отказе устройства.
В чем отличие устройства плавного пуска от частотного преобразователя?
Устройство плавного пуска дешевле частотного преобразователя (инвертора) как в покупке, так и в эксплуатации. Когда приводная система работает с постоянной скоростью, устройство плавного пуска является лучшим решением, чем частотный преобразователь. Если нет необходимости регулировать скорость вращения, частотный преобразователь представляет собой решение, которое излишне увеличивает инвестиционные затраты и дополнительно вызывает неизбежные потери энергии.
Что означают торможение постоянным током и мягкое торможение?
Однонаправленное торможение и мягкое торможение сокращают время простоя двигателя. Торможение постоянным током использует импульсы постоянного тока для сокращения времени остановки двигателя.
Устройство плавного пуска замедляет двигатель примерно до 70% от его полной скорости, а затем останавливает двигатель с помощью тормозного момента в выбранное время торможения.
Плавное торможение вызывает меньший нагрев двигателя и обеспечивает больший тормозной момент для заданного тока, чем торможение постоянным током, и лучше подходит для нагрузок с чрезвычайно высоким моментом инерции (например, ленточные пилы и циркулярные пилы).
Преимущества УПП
Устройства плавного пуска асинхронных двигателей (УПП) – это устройства, которые значительно увеличивают срок эксплуатации электродвигателей и исполнительных устройств, работающих от вала этого двигателя. При подаче напряжения питания обычным способом, происходят процессы, разрушающие электродвигатель.
Пусковой ток и напряжение на обмотках двигателей, в момент переходных процессов, значительно превышают допустимые значения. Это приводит к износу и пробою изоляции обмоток, «подгоранию» контактов, значительно сокращает срок службы подшипников, как самого двигателя, так и устройств «сидящих» на валу электродвигателя.
Для обеспечения необходимой пусковой мощности, приходится увеличивать номинальную мощность питающих электрических сетей, что приводит к значительному удорожанию оборудования и перерасходу электроэнергии.
Кроме того «просадка» напряжения питания в момент пуска электродвигателя – может привести к порче оборудования, задействованного от этих же источников питания, эта же «просадка» наносит серьезный ущерб оборудованию электроснабжения, уменьшает срок его службы.
В момент пуска электродвигатель является серьезным источником электромагнитных помех, нарушающих работу электронного оборудования, запитанного от этих же электрических сетей, или находящихся в непосредственной близости от двигателя.
Если произошла аварийная ситуация и двигатель перегрелся или сгорел, то, в результате нагрева, параметры трансформаторной стали изменятся настолько, что номинальная мощность, отремонтированного двигателя, может снизиться на величину до 30%, в результате, этот электродвигатель окажется непригодным к использованию на прежнем месте.
Подключение и настройка УПП
Устройство плавного пуска электродвигателей объединяет функции плавного пуска и торможения, защиты механизмов и электродвигателей, а также связи с системами автоматизации.
Плавный пуск с помощью софтстартера реализуется медленным подъемом напряжения для плавного разгона двигателя и снижения пусковых токов. Регулируемыми параметрами обычно являются начальное напряжение, время разгона и время торможения электродвигателя.
Очень маленькое значение начального напряжения может очень сильно уменьшить пусковой момент электродвигателя, поэтому оно обычно устанавливается 30-60% от значения номинального напряжения.
При запуске напряжения скачком увеличивается до установленного значения начального напряжения, а потом плавно за заданное время разгона поднимается до номинального значения. Электродвиагетль будет при этом плавно и быстро разгоняться до номинальной скорости.
Применение софстартеров позволяет уменьшить пусковой «бросок» тока до минимальных значений, уменьшает количество применяемых реле и контакторов, выключателей. Обеспечивает надежную защиту электродвигателей от аварийной перегрузки, перегрева, заклинивания, обрыва фазы, снижает уровень электромагнитных помех.
Устройства плавного пуска электродвигателей просты в устройстве, монтаже и эксплуатации.
Пример схемы подключения устройства плавного пуска электродвигателя
Устройства плавного пуска должны иметь встроенный или внешний байпасный контактор. Байпас вызывает полное отключение устройства плавного пуска и переход к питанию двигателя непосредственно от сети после завершения пуска, и, следовательно, устранение потерь, возникающих в энергосистемах внутри прибора.
Без системы байпаса потери внутри устройства могут достигать 1,5–2% мощности, и это следует учитывать при расчете энергоэффективности приводной системы. После перехода устройства плавного пуска в режим байпаса модуль управления устройства постоянно наблюдает за приводом и в случае получения управляющего сигнала переходит в режим торможения, отключая байпас и принимая на себя нагрузку.
При выборе устройства плавного пуска необходимо учитывать следующее:
1. Ток электродвигателя. Необходимо выбирать устройство плавного пуска по полному току нагрузки двигателя, который не должен превышать ток предельной нагрузки устройства плавного пуска.
2. Максимальное число запусков в час. Обычно оно ограничено софтстартером. Необходимо, что-бы количество запусков в час электродвигателя не превышало этот параметр.
3. Напряжение сети. Каждое устройство плавного пуска рассчитано на работу при определенном напряжении. Напряжение сети питания должно соответствовать паспортному значению софтстартера.
Что такое адаптивное управление ускорением?
AAC (Adaptive Acceleration Control) – еще одно развитие технологии плавного пуска. С помощью AAC устройство плавного пуска «изучает» характеристики вашего двигателя во время пуска и останова, а затем регулирует элементы управления для оптимизации работы.
Устройство плавного пуска оценивает скорость двигателя при каждом запуске и останове AAC и регулирует мощность двигателя, чтобы обеспечить выбранный профиль ускорения или замедления. AAC в значительной степени не зависит от изменений нагрузки и особенно подходит для насосов.
Схема работы устройства плавного пуска, его назначение и конструкция
Электрические двигатели являются простыми и надежными машинами, но имеют и некоторые недостатки, которые усложняют их использование. В частности, при запуске такие устройства имеют высокие значения потребляемого тока и без специальных устройств запускаются с рывком из-за несогласованности крутящего момента двигателя и нагрузки на его валу. Дополнительными приборами, которые обеспечивают плавную работу двигателя при запуске и позволяют снизить пусковые токи называют устройствами плавного пуска.
Что такое устройство плавного пуска
Устройство плавного пуска (УПП) – это электротехнический прибор, который применяется в работе асинхронных двигателей и позволяет контролировать и управлять его запуском и параметрами для безопасной работы в сети переменного тока. Такое устройство снижает воздействие на двигатель ряда негативных факторов, в том числе уменьшает вероятность повышенного нагрева двигателя, устраняет рывки, обеспечивая плавный запуск и выход на рабочую нагрузку. Также устройства плавного пуска снижают негативное влияние на электрическую сеть посредством уменьшения пусковых токов электродвигателя.
Часто устройство плавного пуска электротехнические специалисты и люди, связанные с работой электродвигателей, называют такие приборы «мягкими пускателями». Это связано с тем, что на английском языке (а большинство качественных устройств – импортного производства) эти устройства называются «soft starter», что и означает «мягкий пускатель».
Плавный пуск электродвигателей с помощью преобразователей частоты и мягких пускателей позволяет решать большое количество задач и управлять работой электродвигателя в широких пределах его параметров. Особенно часто УПП применяют при работе в условиях тяжелого пуска (с большой инерцией или запуском под нагрузкой с четырехкратными пусковыми токами, с разгоном двигателя не менее 30 секунд) и особо тяжелого пуска (при шести или восьмикратных значения пусковых токов и большим временем разгона двигателя).
Также УПП применяют при сниженной или ограниченной мощности электрической сети, когда пусковые токи могут создавать значительные перегрузки в сети, в том числе с влиянием на автоматическое защитное оборудование, которое при высоких значениях пускового тока, даже кратковременного воздействия, отключает питание.
Сфера применения устройств плавного пуска достаточно обширна: их применяют в работе насосных агрегатов, в вентиляционном и компрессорном оборудовании, на электродвигателях тяжелых производств и в строительстве, в дробильном оборудовании, на конвейерах, эскалаторах и в других механизмах и оборудовании.
Принцип работы
Главный минус электродвигателей асинхронного типа – это то, что момент силы на валу пропорционален квадрату напряжения, которое приложено к электродвигателю. Это создает сильные рывки при запусках и в момент прекращения работы, что также повышает значения индукционного тока.
Устройства плавного пуска могут быть механическими и электрическими, а также комбинированными сочетая в себе положительные черты обоих устройств.
Механические устройства плавного пуска работают по принципу противодействия резкому увеличению оборотов электродвигателя влияя на его ротор механическим способом при помощи тормозных колодок, различных муфт, противовесов, магнитных блокираторов и прочих механизмов. Такие механизмы в последнее время применяются не часто, так как есть более совершенные устройства электрического управления.
Электрические УПП постепенно повышают ток или напряжение от опорного уровня до максимального, что позволяет плавно наращивать обороты электродвигателя и снизить нагрузки и пусковые токи. Чаще всего электрические устройства плавного пуска управляются электронным способом при помощи компьютерных систем или электронных приборов, что позволяет изменять параметры запуска и контролировать динамические характеристики. Мягкие пускатели позволяют изменять режимы работы электродвигателя в зависимости от приложенной нагрузки и позволяют реализовать ту или иную зависимость между скоростью вращения вала и напряжением.
Принцип работы электрических устройств основывается на двух методах:
- Метод ограничения тока в обмотке ротора – реализуется при помощи катушек, соединенных по схеме «звезда»;
- Метод ограничения напряжения и тока в статоре (при помощи тиристоров, симисторов или реостата).
По способу регулировки также различают одно-, двух и трехфазные устройства. УПП с регулировкой напряжения по одной фазе применяют для оборудования до 10 кВт, положительные моменты при таком регулировании – это снижение динамических ударов и рывков при старте, негативные – несимметричная нагрузка при запуске и большие пусковые токи. Мягкие пускатели с регулировкой по двум фазам позволяют снизить пусковые токи и нагрев двигателя при старте и используются в условиях среднетяжелого пуска. Трехфазные устройства плавного пуска значительно снижают пусковые токи и позволяют плавно останавливать электродвигатель, а также обеспечивать аварийное отключение. Такие устройства применяют при тяжелом пуске со значительной нагрузкой, а также с частыми включениями/отключениями двигателя.
Схема подключения электродвигателя к УПП
Для того, чтобы подключить устройство плавного пуска к электродвигателю и питающей сети следует руководствоваться инструкцией на данный тип прибора, там будут указаны все важные аспекты при подключении: последовательность цепи, выводы заземления и нейтрали, а также правильная наладка пуска, разгона и торможения. Но в целом, существуют стандартные способы подключения, которые подходят для большинства устройств плавного пуска.
Каждое УПП имеет контакта на входе и столько же на выходе для подключения фаз, систему управления пуском и остановкой (кнопки ПУСК, СТОП), другие кнопки и контакты управления. К устройству подводят питающие кабели на входные клеммы (обычно это обозначения L1, L2, L3), а от выводных клемм (обозначения T1, T2, T3) подключают электродвигатель. При этом важно подключать УПП к сети через вводной автомат защиты и использовать при подключении двигателя к устройству плавного пуска и самого УПП к сети кабели с номинальным сечением, соответствующем предельному значению тока двигателя.
Некоторые устройства могут управляться не только с переключателей и устройств управления на самом приборе, но и через контакты реле или контроллера – это усложняет схему подключения прибора, но расширяет его возможности.
Схема подключения насосной станции к колодцу — выбор места, установка и запуск
В случае отсутствия централизованного водоснабжения приблизить условия жизни в частном доме или на даче к максимальному комфорту можно за счет усовершенствования системы подачи воды. Это довольно легко реализуется, если организовать подключение насосной станции к колодцу, схема при этом может немного разниться, но, в общем и целом, данный процесс предполагает выполнение нескольких общих этапов.
Как работает и из чего состоит насосная станция
Вариантов исполнения таких устройств несколько. Все они отличаются типом используемого насосного агрегата и накопителя. Если рассматривать модель с гидроаккумулятором, то можно говорить о более высокой степени эффективности благодаря особенностям конструкции:
- мембранный бак, разделенный на два отсека перегородкой;
- реле давления, контролирующее работу устройства при значительных изменениях значений давления;
- электродвигатель;
- сам насосный агрегат;
- клеммы заземления;
- манометр;
- кабель.
Основа функционирования такого устройства – реле давления, которое срабатывает при существенных изменениях значения давления, как в меньшую, так и в большую сторону. Это позволяет сократить количество запусков оборудования и, тем самым, снижает интенсивность износа основных узлов. Если рассматривается модель, где вместо гидроаккумулятора предусмотрен накопительный бак, то в этом случае не стоит ожидать большой производительности, так как жидкость продвигается естественным образом, без принудительного воздействия на нее.
Дополнительно ко всему немалые габариты порой затрудняют установку устройства, а непосредственно сам накопительный бак в обязательном порядке монтируется выше уровня расположения насосной станции. И еще один немаловажный недостаток техники данного вида заключается в вероятности затопления помещения при переливе воды из накопителя. Но это происходит лишь в случае поломки датчика наполненности бака. Именно этот элемент отвечает за пуск оборудования.
Основные узлы насосной станции также описаны на видео.
Если требуется выполнить подключение своими руками насосной станции к колодцу схема будет разниться и в зависимости от вида насосного агрегата: с эжектором и без такового. Причем первый вариант существует в двух вариациях: со встроенным (отличается большей производительностью) и выносным эжектором. Особенность конструкции со встроенным эжектором заключается в возможности всасывания воды при создании разряжения. Но при этом отмечается повышенный уровень шума. Несколько менее эффективны исполнения с выносным эжектором. Самые же простые и недорогие по стоимости устройства – безэжекторные.
Прочитав отдельную статью, вы узнаете, как выбирать насосные станции водоснабжения для частного дома.
Со временем в колодезной воде могут появиться различного рода загрязнения. Про различные способы самостоятельной очистки колодца читайте в этом материале.
Узнайте, какие могут быть схемы водопровода в квартире или в доме и про их особенности.
Где можно установить насосную станцию
Для повышения эффективности подачи воды в жилье нужно подбирать не только сам агрегат, но еще и наиболее подходящий участок для его монтажа. При правильном подходе можно повысить эффективность системы локального водоснабжения, но для этого следует руководствоваться следующими критериями:
- при установке оборудования как можно ближе к колодцу снижаются потери мощности, а вода подается заметно более стабильно;
- для нормальной работы устройства необходимо обеспечить теплый микроклимат, следить за уровнем влажности и организовать эффективную систему вентиляции;
- не рекомендуется определять насосный агрегат в тесное помещение, так как на всякий случай лучше заранее обеспечить свободный доступ к технике при возникновении необходимости ремонта или обслуживания;
- учитывая, что высокопроизводительная техника издает довольно много шума по мере функционирования, то желательно организовать и звукоизоляцию в помещении.
Выбирая схему как подключить насосную станцию к колодцу самому, нужно предварительно подобрать подходящее место для этой цели. Из возможных вариантов можно рассмотреть лишь несколько:
-
Расположение в отдельном помещении. Лучше всего, конечно, организовать котельную, где будет установлено такое оборудование.
Отдельная постройка для размещения насосной станции рядом с колодцем
Пример того, как можно разместить оборудование в колодце
В каждом из этих вариантов присутствуют и положительные, и отрицательные моменты, однако, если грамотно подойти к тепло- и звукоизоляции помещения, то функциональность оборудования от этого только выиграет, так как будет исключен риск нестабильной работы.
Как производится подключение
Перед тем, как подключить насосную станцию к колодцу, от колодца до жилья необходимо проложить трубопровод, а для этого первым делом подготавливается траншея, которая по своей глубине должна превышать уровень промерзания грунта. Если это правило проигнорировать, то коммуникации в холодное время года будут промерзать. В качестве дополнительных мер во избежание таких последствий нередко выполняется теплоизоляция труб.
Стандартная схема подключения насосной станции к колодцу предусматривает укладку трубопровода ниже глубины промерзания грунта
Но имеют место и другие тонкости: на дно подготовленной траншеи насыпается песчаная «подушка», толщина которой должна быть порядка 20 см. Если глубина залегания коммуникаций значительно превышает уровень промерзания почвы, то в теплоизоляции нет острой необходимости, но вполне можно использовать такое решение в качестве вспомогательной меры.
Важно: Если же нет возможности подготовить достаточной глубины траншею, то теплоизоляционный материал для защиты труб от промерзания является обязательной мерой.
Со стороны дома в фундаменте нужно сделать отверстие достаточного диаметра, чтобы прошла подводящая труба. А со стороны напорного водопровода устанавливается фильтр глубокой очистки, а также запорная арматура и футорка. Для соединения с полиэтиленовой трубой используется обжимная муфта. Далее остается подключить насосный агрегат к колодцу.
В первую очередь подготавливается прочное основание (из кирпича или бетона), поверх которого настилается резиновый материал. Это позволит несколько сгладить эффект от вибраций, создаваемых устройством во время функционирования. Фиксация самого устройства на бетонном основании выполняется посредством анкерных болтов.
На конец трубы, которая будет опускаться в колодец, крепится фильтрующий элемент (сетка) с обратным клапаном, что заметно снизит риск подачи загрязненной воды потребителю. Обратный клапан же способствует постоянному заполнению насоса водой, а это важный нюанс при поддержании работоспособности устройства. Иногда для повышения надежности работы системы обратный клапан устанавливается еще и на другом конце заборного трубопровода, который подключается к насосному агрегату, но это не является правилом.
Самостоятельная установка насосной станции в колодце производится посредством полиэтиленовой трубы диаметром 32 мм. Для создания герметичных соединений помимо уплотнителя используется разводной ключ. При подключении трубы понадобится муфта (2 шт.), кран-«американка» и металлический уголок (колено). Муфта соединяет узел, включающий обратный клапан и сетчатый фильтрующий элемент, с полиэтиленовой трубой. Еще один соединительный элемент устанавливается на входе насосного агрегата, позволяя подключить трубу. Такая конструкция позволяет опустить заборный трубопровод в колодец.
Монтаж трубопровода к насосной станции от колодца к напорному водопроводу
Иногда возникают ситуации, когда колодец нужно углубить. Технология углубления колодца пластиковыми трубами описана на нашем сайте.
Помимо оборудования для водоснабжения, может понадобится отдельный насос для полива, который имеет свои особенности.
В качестве такого насоса можно использовать насос Малыш, который зарекомендовал себя как недорогой и надежный агрегат http://okanalizacii.ru/vodosnabzhenie/nasosy-i-stancii/pogruzhnoj-nasos-malysh.html
Как произвести тестовый запуск
Главное условие при этом – заполнение насосной станции водой, включая и все магистрали, а также гидроаккумулятор. Пуск воды в устройство происходит через заливное отверстие. Включение питания и запуск двигателя выполняется после того, как были открыты запорные вентили. После этого вода постепенно заполняет напорный трубопровод. Это нужно для того, чтобы вытеснить весь воздух из него. В результате происходит повышение давления. Как правило, этот параметр может принимать значения из диапазона от 1,5 до 3 атмосфер, по достижении предельной отметки оборудование отключается.
Таким образом, эффективную работу подобной техники обеспечивает не только правильный выбор модели, подходящей для эксплуатации в определенных условиях, но также и грамотное подключение. А для этого сначала решается, где будет устанавливаться техника, после чего организуется герметичное соединение оборудования с внутренним и наружным трубопроводом.
Схема подключения насосной станции к колодцу на даче своими руками с фильтрами: Пошаговая инструкция +Видео
Дома в частном секторе редко имеют подключение к центральной системе водоснабжения, по этой причине собственники недвижимости организуют собственные источники воды. Мало организовать место забора жидкости, ее требуется транспортировать в дом, для этого устанавливается насосная станция.
Часто возникает вопрос, можно ли произвести монтаж своими силами?
Следуя определенной инструкции и зная все «подводные камни» вполне реально. В статье пойдет речь о таком источнике, как колодец, и какая схема подключения насосной станции к колодцу.
Общие сведения
Функции насосной станции
- Поднятие ресурса из колодца
- Круглосуточная транспортировка жидкости к каждой точке водопотребления
- Устранение воздушных пробок
- Обеспечение и поддержание требуемого давления в системе
- Доставка воды при отключении насоса в определенный отрезок времени (ремонт, отключение электричества).
Насосная установка отличается от обычных агрегатов для откачки жидкости тем, что ей не требуется бесперебойная работа. Она автоматически включается, когда уровень воды в гидроаккумуляторе стал минимальным, и отключается, если он поднялся до требуемой отметки. Таким образом, оборудование меньше изнашивается.
Элементы насосной установки
Установка – это не один большой агрегат, она состоит из многих устройств, каждое из которых выполняет заданную функцию. Только правильно собранная система, гарантирует качественную и продуктивную работу.
Основные устройства станции
Насос
В большинстве случаев для установки используют самовсасывающий или центробежный агрегат с наземной установкой. Насос монтируется с остальным оборудованием установки, в колодец опускается только шланг для откачивания воды.
Фильтр механической очистки
Фильтр исключает попадание в насос твердых частиц, что содержаться в откачиваемом ресурсе. Устанавливают его на погружаемое в воду основание шланга.
Обратный клапан
Купирует движение воды в обратном направлении.
Гидроаккумулятор
Гидроаккумулятор – это металлический бак, разделенный внутри на две секции мембраной. В одной части находится жидкость в другой воздух.
Жидкость накапливается в гибробаке и растягивает мембрану, воздух сжимается под образующимся натиском, когда насос отключается, воздух выталкивает воду, так она попадает в трубопровод.
Гидробак
Обеспечивает постоянный напор воды и страхует от гудроударов.
Автоматический блок
Контролирует включение и отключение насоса. Встроенное реле автоматически включает насос, как только уровень давления достигает минимальной точки, и также самостоятельно отключает устройство при требуемых параметрах. Измеряет давление в трубах манометр.
К сведению. Стандартная насосная станция с поверхностным насосом способна транспортировать жидкость не более чем с глубины в 10 метров.
При более глубоком источнике используются погружные насосы или насосная станция дополняется эжектором.
Монтаж своими руками
Параметры
Перед сборкой насосной станции, следует выяснить все параметры для системы водоснабжения.
Дебет скважины – отвечает за то сколько воды станция сможет откачать за определенный отрезок времени.
Формула
Объем требуемой жидкости – водопотребление.
Определяется легко. Средний показатель потребления воды в сутки одним человеком составляет 200 литров. Это число умножается на количество постоянно проживающих.
Пример
Постоянно проживает 4 человека, 200*4=800
Итог: 800 литров воды в среднем потребуется доставить в сутки. Объем водопотребления равен 800л. Он не должен превышать дебета источника.
Внимание! Если в летнее время предусмотренная поливка садовых культур или газона, объем потребления следует увеличить.
Характеристика источника
Главный критерий – это глубина источника. От нее и архитектуры дома зависят многие факторы выбора насосной станции.
Следует учесть все параметры. Тогда можно подобрать установку, которая сможет транспортировать воду из самой нижней части источника до самой верхней точки здания.
Как выбрать место для установки
Место установки один из важнейших вопросов. Чтобы станция работала с должной производительностью и без перебоев, помимо качественной сборки, требуется грамотно подобрать для нее место.
- Насосная станция устанавливается на максимально близком расстоянии от колодца.
- Монтаж производится в отапливаемом помещении, чтобы избежать замерзания зимой.
- Насосная станция должна иметь свободный доступ для ревизии и ремонта.
В большинстве случаев агрегат устанавливается в цоколе или отдельной оборудованной пристройке. Если позволяет место и глубина, то можно произвести монтаж в колодце.
Установка вне дома решает проблему с шумом, что создает станция при работе.
Трубы от дома до станции прокладывают ниже уровня промерзания почвы, если это невозможно, то хорошо утепляют магистраль.
Сборка
Сборка и подключение насосной станции займут достаточно много времени.
- Наконец шланга для забора жидкости устанавливается фильтр и обратный клапан.
- Другой конец шланга подсоединяется к насосному входному патрубку
- Насос соединяется с гидробаком при помощи шланга.
- На гидробак устанавливается реле.
- После выполнения всех соединений, агрегат монтируется к водопроводной магистрали при помощи гибкого шланга или отрезка трубы.
- Станция подключается к электропитанию. Проводится первичный запуск.
На вход и выход насосной станции обязательно монтируются запорные краны, чтобы в случае необходимости перекрыть воду и осуществить требуемые действия, будь то ремонт или техническое обслуживание.
ЭБУ насосной установки можно дополнить датчиками температуры насоса и наличия воды.
Особое внимание при запуске установки стоит уделить реле давления. Его требуется отрегулировать, установив максимальный и минимальный параметр давления. Осуществляется это с помощью специальных пружин, сжатие которых регулируется винтами. Если все сделать правильно, автоматика будет работать без нареканий и давление в системе стабильным.
Важно! Насосная станция устанавливается на абсолютно ровную поверхность, для достижения этой цели используется деревянный щит, бетонная стяжка или бетонный блок. Перекосы не допустимы.
Сэкономить бюджет, можно не только самостоятельно установив оборудование, но и сделав гидробак.
Потребуется
- Накопитель для воды, как минимум объемом 30 литров. Изготовить его можно из пластиковой бочки, металла. Основным требованием являются гладкие внутренние стенки и прочность.
- Мембрана нужного размера
- Реле давления
- Прибор для измерения давления
- Переходники
- Шаровые краны.
Итоги
Четко следуя пошаговой схеме сборки и подключения агрегата, можно получить гарантию продуктивной работы насосной станции.
Как подключить насосную станцию: установка своими руками, схемы подключения к колодцу или скважине
Может ли быть собрана и установлена насосная станция своими руками, без привлечения сторонних специалистов? Таким вопросом задаются многие собственники дач и загородных домов, желающие обеспечить себя требуемым количеством воды как для бытовых нужд, так и для полива растений на приусадебном участке. Еще большую актуальность вопрос по установке насосной станции, собрать которую своими руками вполне реально, приобретает в тех случаях, когда дача или загородный дом расположены в районах без централизованного водоснабжения.
Насосная станция – это компактное и одновременно функциональное оборудование, обеспечивающее стабильное водоснабжение частного дома
Для чего в автономной системе водоснабжения нужна насосная станция
Решив установить на скважину, уже имеющуюся на приусадебном участке, насосную станцию, следует сначала разобраться в том, для чего нужна такая установка. Если говорить о тех задачах, которые позволяют эффективно решать насосные станции для скважин и колодцев, то сюда следует отнести:
- подъем воды из скважины или колодца и ее бесперебойная подача ко всем точкам автономной системы водоснабжения;
- обеспечение стабильного давления потока жидкой среды, транспортируемой по трубопроводной системе, а также отсутствия в элементах такой системы воздушных пробок;
- обеспечение подачи воды в трубопроводную систему в течение некоторого периода даже в тех случаях, когда электронасос не работает, что может произойти из-за его поломки или при сбоях в сети электроснабжения.
Летняя насосная станция обеспечит подачу воды для полива и хозяйственных нужд в теплое время года
В отличие от отдельно взятых насосов, также используемых для откачивания воды из скважины или колодца, насосные установки обеспечивают более щадящий режим работы оборудования, поскольку электронасос, входящий в состав таких станций, включается не при каждом открытии кранов в точках водоразбора, а только в те моменты, когда уровень жидкой среды в гидроаккумуляторе снижается до критической отметки.
Конструктивные особенности насосной установки
Насосная установка (станция) – это целый комплекс технических устройств, каждое из которых играет свою роль в вопросе обеспечения эффективной работы всей системы в целом. Типовая конструктивная схема насосной установки включает в себя целый ряд элементов.
Основные части насосной станции
В этом качестве, как правило, используются поверхностные устройства самовсасывающего или центробежного типа. Устанавливаются они вместе с комплектом остального оборудования, входящего в состав станции, на поверхности земли, а в скважину или колодец опускается заборный шланг, по которому и осуществляется откачивание жидкой среды из подземного источника.
Фильтр механической очистки
Фильтр устанавливается на конец шланга, опускаемый в перекачиваемую жидкую среду. Задача такого устройства заключается в том, чтобы не допустить попадания во внутреннюю часть насоса твердых включений, содержащихся в составе откачиваемой из подземного источника воды.
Сетчатые фильтры для скважин
Этот элемент не дает откачиваемой из скважины или колодца воде двигаться в обратном направлении.
Гидробак представляет собой металлическую емкость, внутренняя часть которой разделена упругой перегородкой из резины – мембраной. В одной части такого бака содержится воздушная среда, а в другую закачивается вода, поднимаемая насосом из подземного источника. Поступающая в гидроаккумулятор вода натягивает мембрану, а при отключении насоса начинает сжиматься, воздействуя на жидкость в другой половине бака и выталкивая ее через напорный патрубок в трубопровод под определенным давлением.
Устройство гидроаккумулятора насосной станции
Работая по вышеописанному принципу, гидроаккумулятор насосной станции обеспечивает постоянное давление потока жидкости в трубопроводе. Кроме того, насосная станция, установка которой не отнимает много сил и средств, исключает появление опасных для системы водоснабжения гидравлических ударов.
Он управляет работой насосной установки. Основным элементом блока насосной автоматики является реле, реагирующее на уровень давления воды, которой наполняют бак гидроаккумулятора. В том случае, когда давление воды в гидроаккумуляторе падает до критической отметки, с помощью реле автоматически включается электронасос, и в емкость гидробака начинает поступать вода, натягивая мембрану. Когда же давление жидкой среды поднимается до требуемого уровня, насос выключается.
Блоки автоматики позволяют автоматизировать работу электронасоса
Насосные установки также оснащаются манометрами для измерения давления и трубами, при помощи которых осуществляются обвязка и соединение с основным контуром системы водоснабжения.
Следует иметь в виду, что типовая насосная установка, которая изготовлена на базе поверхностного насоса, может использоваться для откачивания воды из скважин и колодцев, глубина которых не превышает 10 метров. Для того чтобы поднимать воду из более глубоких подземных источников, можно дополнительно оснастить насосную установку эжектором либо собрать насосную станцию с погружным насосом, но такая конструктивная схема используется достаточно редко.
Схема монтажа насоса с выносным эжектором
На современном рынке предлагается множество насосных станций различных моделей и торговых марок, цены на которые довольно сильно разнятся. Между тем можно сэкономить на приобретении серийного оборудования, если купить необходимые комплектующие и собрать насосную станцию своими руками.
С чего начать
Прежде чем задумываться о том, как собрать насосную станцию для частного дома или для дачи, надо рассчитать параметры системы водоснабжения, которую такое оборудование будет обслуживать. Ниже перечислены основные характеристики системы водоснабжения, которыми определяются технические параметры насосного оборудования, а также схема подключения насосной станции.
От этого параметра будет напрямую зависеть, какое количество воды насосная установка сможет откачать из подземного источника за единицу времени.
Формула расчета дебита скважины
При расчете учитывают количество людей, которые будут постоянно проживать в доме, обслуживаемом водопроводной системой, а также количество и тип бытовой техники, для работы которой необходима вода. Естественно, объем водопотребления не может превышать дебет скважины, так как в таком случае подземный источник просто не сможет обеспечить подачу того количества воды, которое необходимо для обслуживания автономной водопроводной системы. При расчете объема водопотребления следует учитывать и тот факт, что в летний период насосные установки используются не только для бытовых нужд, но и при поливе зеленых насаждений.
Здесь речь идет о глубине источника. Важны также архитектурные особенности строения, которое будет обслуживаться водопроводной системой. Учитывать данные параметры необходимо для того, чтобы подобрать насосное оборудование, которое будет в состоянии откачать воду из самой нижней точки источника и поднять ее по трубопроводной системе до самой верхней точки водоразбора в доме.
После определения всех вышеперечисленных параметров можно подобрать и приобрести все необходимые комплектующие и приступить к монтажу насосной станции.
Выбираем место для установки
Изготовить насосную установку для частного дома или дачи своими руками несложно. Однако при этом надо решить вопрос о том, как и где правильно установить насосную станцию. Место для установки насосной станции, от правильного выбора и обустройства которого будет зависеть эффективность работы оборудования, должно соответствовать определенным требованиям.
- Если бурение скважины или обустройство колодца на приусадебном участке уже выполнено, то насосная станция монтируется как можно ближе к источнику водоснабжения.
- В целях защиты насосного оборудования от замерзания воды в холодное время года место установки должно отличаться комфортными температурными условиями.
- Поскольку насосные установки нуждаются в регулярном техническом обслуживании, то к месту их установки должен быть обеспечен свободный доступ.
Исходя из вышеперечисленных требований, в качестве места для установки насосной станции на даче или в частном доме используют кессон или отдельное и специально оборудованное помещение.
В идеале место для насосной станции следует предусмотреть на стадии строительства дома, выделив для этого отдельное помещение
Иногда монтируют насосные установки в постройках, которые уже есть на территории приусадебного участка. У каждого из перечисленных вариантов есть свои плюсы и минусы, на которых следует остановиться подробнее.
Размещение насосной станции в отдельном помещении в здании с пробуренной под домом скважиной
Схема установки насосной станции в подвальном помещении дома является практически идеальным вариантом для расположения такого оборудования. При данной схеме установки обеспечивается легкий доступ к оборудованию, а также легко решается вопрос по снижению уровня шума, создаваемого при работе станции. Наиболее удачным такой вариант станет в том случае, если помещение для насоса будет отапливаемым.
Размещение насосной станции в теплом обустроенном подвале
Если насосная установка располагается в надворном строении, несколько затрудняется быстрый доступ к ней. Зато при такой схеме подключения насосной станции кардинально решается проблема с шумом от работы оборудования.
Станцию можно установить на кронштейне в достаточно широком и глубоком колодце
Следует уделить особое внимание вопросу прокладки трубопроводной системы. Трубы, по которым вода будет транспортироваться от насосной станции до жилого строения, размещают в грунте ниже уровня его промерзания либо, если их монтируют на поверхности земли, хорошо утепляют. Такой подход к монтажу трубопровода защитит воду от замерзания в зимний период.
Установка станции в кессоне обеспечит защиту от промерзания и полную шумоизоляцию
Достаточно часто насосные станции монтируют в кессоне – специальном резервуаре, который устанавливают над оголовком скважины, непосредственно в приямок. В качестве кессона может выступать как пластиковая или металлическая емкость, заглубленная в грунт ниже уровня его промерзания, так и капитальное подземное сооружение, стенки и основание которого выполнены из бетона либо отделаны кирпичной кладкой. Следует иметь в виду, что при установке насосной станции в кессоне доступ к оборудованию достаточно ограничен. Кроме того, если используется для насосной станции схема подключения данного типа, то отрезок трубопровода между насосным оборудованием и обслуживаемым им строением необходимо тщательно утеплять или располагать в грунте на глубине, находящейся ниже уровня промерзания.
Как осуществляется процесс сборки
Лучше всего, если сборка насосной станции и ее подключение осуществляются в сухую и теплую погоду. Это позволит без спешки, правильно и аккуратно выполнить все процедуры, проводимые на открытом воздухе. Придерживаться такой рекомендации следует и потому, что на сборку, подключение и регулировку насосной станции может потребоваться значительное количество времени.
Схема подключения насосной станции
Схема, по которой осуществляются сборка и подключение насосной станции с накопительным баком-гидроаккумулятором, выглядит следующим образом.
- Сначала на заборный шланг устанавливаются обратный клапан и фильтр грубой очистки, который защитит насос от попадания в его внутреннюю камеру твердых включений, содержащихся в составе перекачиваемой воды.
- Затем осуществляется подсоединение верхнего конца заборного шланга к входному патрубку насоса.
- После соединения заборного шланга и помпы собираем всю конструкцию насосной станции. Для этого, используя шланг, напорный патрубок насоса соединяем с входным патрубком гидроаккумулятора.
- Для обеспечения автоматического включения и выключения насоса на гидроаккумулятор монтируют реле, которое устанавливает соответствующие параметры давления воды в гидробаке.
- После выполнения всех вышеописанных процедур осуществляется подключение собранной и установленной насосной станции к системе водоснабжения, для чего может быть использован шланг (или жесткая труба).
- После соединения всех элементов системы насосная станция подключается к сети электроснабжения. Осуществляется тестовый запуск оборудования.
Подключение реле давления насосной станции
На входную и напорную магистрали насосной станции обязательно устанавливаются шаровые краны, которые необходимы для того, чтобы изолировать оборудование от обслуживаемой им системы в тех случаях, когда требуется выполнить его демонтаж для техобслуживания и ремонта.
Автоматика для насосной станции, которая обеспечивает более эффективную работу оборудования и его защиту от нештатных ситуаций, кроме реле давления, может дополнительно включать в себя и ряд других технических элементов. К таким элементам, в частности, относятся датчик наличия воды в системе и датчик, контролирующий степень нагрева корпуса электронасоса.
При запуске насосной станции и ее дальнейшей эксплуатации важно также знать, как отрегулировать реле давление на требуемые параметры срабатывания. Настроить такое реле на верхнее и нижнее значения давления, при которых оно будет автоматически отключать и включать насос, можно при помощи двух пружин. Степень их сжатия регулируется посредством специальных винтов. Правильно отрегулированный датчик давления запускает и отключает насос станции именно в те моменты, когда это необходимо, а также обеспечивает подачу воды в гидроаккумулятор равномерным потоком и без перебоев.
Рекомендации по установке
Перед тем как осуществлять подключение насосной станции к сети электропитания и опускать в шахту скважины или колодца заборный шланг, важно правильно установить такое оборудование. Чтобы получить более полное представление о процессе монтажа насосной станции, можно не только изучить теоретическую информацию на данную тему, но и просмотреть соответствующее видео.
В качестве опорной площадки, на которую устанавливается насосная станция, может быть использовано предварительно залитое бетонное основание, а также обычная бетонная плита или деревянный щит. Главное, что следует контролировать при выполнении установки насосной станции, – это чтобы оборудование располагалось на опорной площадке абсолютно ровно, без перекосов.
Какие элементы насосной станции можно изготовить самостоятельно
На стоимости самодельной насосной станции можно неплохо сэкономить, если изготовить для нее гидроаккумулятор своими руками. Самодельный гидроаккумулятор изготавливают многие домашние мастера.
Как сделать самостоятельно такое устройство? Чтобы сделать гидроаккумулятор своими руками, потребуются следующие комплектующие:
- емкость объемом не менее 30 л;
- резиновая мембрана соответствующего диаметра;
- реле давления;
- манометр;
- набор фитингов;
- запорный кран.
В качестве основного элемента – бачка – можно использовать пластиковую, алюминиевую или стальную емкость, внутренние стенки которой должны быть ровными и гладкими, чтобы не повредить мембрану. После подготовки всех комплектующих для самодельного гидроаккумулятора их соединяют в одну конструкцию.
Как бюджетно сделать гидроаккумулятор без мембраны? Подробный ответ в небольшом видеоролике ниже.