Схема котла отопления, разводка, параллельное подключение, устройство и система

Разводка отопления от котла в частном доме

На словах составить и обговорить систему отопления – дело нехитрое. Однако, чтобы она правильно функционировала, была эффективной и экономной, следует подробно спланировать и рассчитать каждый элемент и узел. Разводка отопления от котла в частном доме прокладывается не только с учетом красоты и комфорта. Важно учитывать тип системы, характеристики материалов, которые будут использоваться, и придерживаться общих требований.

  1. Основные требования
  2. Диаметр труб
  3. Уменьшаем сопротивление труб и контура
  4. Схемы разводки
  5. Цена за 1м2 работ

Основные требования

Основная задача заключается в соединении котла и всех радиаторов самым эффективным способом. При этом важно учесть целый ряд требований:

  • Разводка должна прокладываться по маршруту с наименьшей протяженностью.
  • Гидросопротивление труб, запорной арматуры и фитингов следует по возможности уменьшать.
  • Необходимо продумать и скомпоновать на линии все функциональные узлы с минимальным количеством колен, тройников и клапанов. Имеется в виду группа безопасности, расширительный бак, циркуляционный насос штуцера для слива и наполнения системы и т.д.
  • Трубы подбираются исходя из эксплуатационных характеристик материала и системы отопления.
  • Диаметр труб рассчитывается для минимизаций потерь в напоре с одной стороны и снижения объема трубопровода с другой.

Диаметр труб

Теоретически рассчитать оптимальный диаметр труб для системы отопления в доме достаточно сложно. Учитывается требуемый напор, статическое и динамическое давление, сопротивление трубопровода с учетом маршрута прокладки, шероховатости внутренней поверхности труб и многих дополнительных параметров. На практике все равно придется выбирать из достаточно ограниченного списка диаметров труб из того или иного материала. Типоразмеры и основные характеристики труб давно стандартизированы, как и все дополнительные элементы, необходимые для сборки контура отопления от котла к радиаторам.

Основная идея заключается в том, чтобы обеспечить:

  • скорость движения теплоносителя в трубах на уровне 0,4-0,6 м/с;
  • сопротивление всего контура отопления ниже, чем напор, создаваемый насосом или гравитацией в системе с естественной циркуляцией;
  • минимальный объем теплоносителя в трубах. Не путать с общим объемом, включая котел и при необходимости аккумулирующую емкость.

Уменьшаем сопротивление труб и контура

Для систем с естественной циркуляцией:

  • Любые развороты и колена по маршруту выполняются с учетом минимально допустимого радиуса разворота, для используемого типа труб.
  • Переходы между трубами с различным диаметром, врезка стояков в коллектор раздатки выполняется без заужения меньшего диаметра и по возможности с постепенным расширением/сужением канала.
  • Перед запорной, регулирующей арматурой, радиаторами или другим оборудованием следует формировать ровный участок трубы не менее 5-6 диаметров трубы, чтобы исключить лишнюю турбулентность и завихрения в потоке жидкости.

Для системы с принудительной циркуляцией предыдущие советы не являются обязательными, важно, чтобы сопротивление контура было меньше, чем создаваемый насосом напор. Однако при выполнении всех требований снизится нагрузка на насос и соответственно повысится его рабочий ресурс. За счет принудительной прокачки теплоносителя можно использовать металлопластиковые трубы с малым сечением, нижнюю двухтрубную или однотрубную схему подключения, в том числе с запаковкой труб в стяжку или стены.

Схемы разводки

На практике применяется большое число возможных типов подключения. Выделить можно четыре основных, а на их базе уже подобрать либо готовое решение, либо комбинированное.

  1. Однотрубная разводка с разгонным коллектором или без него. От котла труба идет к первому радиатору. Радиаторы подключаются последовательно, и от последнего в контуре теплообменника идет труба обратки к холодному входу котла. По способу ориентации разводки:
  • Горизонтальная – вариант для одноэтажных домов с прокладкой труб по периметру отапливаемого здания.
  • Вертикальная – последовательное подключение радиаторов в стояки по всем этажам с разделением теплоносителя в общем раздающем коллекторе. Схема однотрубной разводки с разгонным коллектором
  1. Двухтрубная разводка с верхней раздачей. Труба от котла поднимается на уровень потолка или чердака и от нее параллельно подключается каждый радиатор. По уровню пола или подвального помещения прокладывается обратная линия с подключением каждого радиатора с помощью тройников. Схема двухтрубной разводки с верхней раздачей
  2. Двухтрубная разводка с нижней раздачей. Только для принудительной циркуляции теплоносителя. Обе линии от котла и раздача, и обратка прокладываются по уровню пола и по периметру отапливаемого здания. Схема двухтрубной разводки с нижней раздачей
  3. Коллекторная группа устанавливается в одной точке, желательно в центре дома. От нее выполняется разводка труб к каждому радиатору в доме или к нескольким контурам для каждого помещения, где радиаторы подсоединяются последовательно или включается контур теплого пола. Трубы монтируются по черновой стяжке и заливаются бетоном. Единственным вариантом прокачки теплоносителя – принудительная циркуляция.

Для любого способа включения обязательно подбирается набор регулирующего оборудования группы безопасности и диагностики. Состав оборудования различается в зависимости от наличия насоса или использования гравитационной системы.

Для естественной циркуляции все предельно просто:

  1. Нужна линия от котла к расширительному баку, расположенному как можно выше.
  2. От расширительного бака или от коллектора непосредственно возле бака отводится труба для подключения радиаторов. В случае разгонного коллектора и нижней однотрубной разводки труба опускается с постепенным наклоном к первому радиатору.
  3. Далее выполняется разводка по радиаторам согласно выбранному способу подключения, с обязательным уклоном минимум 2-3 градуса.
  4. От последнего радиатора ведется к котлу обратная линия с подключением к нижнему холодному вводу. На обратной линии непосредственно возле котла врезается тройник с запорным вентилем и штуцером для слива теплоносителя.

Важнее правильно выполнить разводку труб. Точки соединения и фитинги не должны заужать сечение канала. Разворот трубы или колено подбирается с радиусом разворота не менее 1,5 диаметра трубы. Если труба опускается к радиатору сверху или поднимается, то сначала формируется колено, а после врезается байпас и радиатор.

Читайте также:  Сыпучий утеплитель для теплоизоляции стен, пола и потолка частного дома

Для принудительной циркуляции состав оборудования значительно расширен:

  • Расширительный бак, мембранного типа. Допускается установка на горячем и на холодном выходе котла, главное как можно ближе к теплообменнику или теплоаккумулятору. Для твердотопливных (ТТ) котлов в виду невозможности точно регулировать температуру воды на выходе вначале монтируется прямой отвод длиной не менее метра стальной трубой, а уже после подключение оборудования. Расширительный бак для ТТ котлов устанавливается на обратной, холодной линии.
  • Группа безопасности (воздухоотводчик, предохранительный клапан, манометр). Группа безопасности располагается на горячем выходе котла. От группы безопасности котла должен быть короткий участок трубы с максимально допустимым диаметром и без какой-либо запорной арматуры, способной сузить канал (допускаются шаровые вентили). Группа безопасности устанавливается в верхней точке контура.
  • Фильтр грубой очистки. Обязательный элемент, даже с учетом подготовки теплоносителя. Устанавливается перед циркуляционным насосом на обратной линии.
  • Циркуляционный насос. По умолчанию устанавливается на обратной линии, где температура теплоносителя меньше. Если разводка системы хотя бы теоретически подходит для естественной циркуляции, то насос подключается параллельно общей трубе с байпасом. Запорная арматура устанавливается по обе стороны насоса и на байпасе. В остальных случаях насос допускается устанавливать прямотоком в разрыв обратки с запорными вентилями с обеих сторон.
  • Дополнительные манометры для диагностики. Для диагностики и проверки работоспособности отопления важно знать давление на обоих выводах котла, с двух сторон циркуляционного насоса и фильтра грубой очистки, помимо манометра, установленного с группой безопасности. В зависимости от последовательности подключения оборудования точки могут совмещаться и в конечном итоге понадобится установить 2-3 манометра с помощью трехходовых клапанов или тройников.
  • Трехходовой клапан для байпаса на котел.
  • Тройниковый отвод с запорной арматурой для наполнения системы теплоносителем и слива.

Перед выбором всего списка оборудования следует выяснить, что уже есть в самом котле отопления, часто в настенных газовых или электрических котлах имеется расширительный бак и группа безопасности как минимум.

Все оборудование должно компоноваться по возможности недалеко от котла, с доступом для осмотра и проведения профилактических работ. Исключением является коллекторная разводка, при которой часть оборудования остается возле котла (общий циркуляционный насос, расширительный бак, группа безопасности), а часть – в точке установки коллектора (запорная и регулирующая арматура, дополнительные насосы для контуров, воздухоотводчики и т.п.)

Цена за 1м2 работ

Сложно самостоятельно учесть все нюансы и правильно выполнит разводку теплосети по дому. Куда лучше доверить эту работу специалистам, которые предложат оптимальный вариант и набор дополнительного оборудования. Опираясь на опыт, проектировщики и монтажники способны правильно расставить акценты в зависимости от пожелания заказчика: делать отопление с максимальной эффективностью и комфортом в эксплуатации или же стремиться к экономии средств на работу и монтаж.

Стоимость работ включает в себя отдельно установку котла, подключение дополнительного оборудования, разводку труб и установку радиаторов. По каждому пункту действует свой прейскурант, согласно которому подсчитывается стоимость всех работ по оборудованию системы отопления в доме.

Вид работы единицы измерения Стоимость, руб.
Установка котла отопления мощностью до 50 кВт шт. 12000-20000
Установка котла мощностью свыше 50 кВт шт. 25000-50000
Монтаж группы безопасности шт. от 1500
Расширительный бак шт. от 2000
Циркуляционный насос шт. от 2000
Установка и подключение гребенки (коллектора) шт. от 1500
Разводка труб D16-25 пог.м. 60-85
Разводка труб D32-40 пог.м. 75-90
Разводка труб D55-63 пог.м. 90-120
Разводка труб D75-110 пог.м. 100-150
Установка и подключение радиатора шт. 2000-5000
Установка терморегулятора шт. 500
Опрессовка согласно требованиям производителя котельного оборудования от 4500
Пусконаладочные работы от 3500

Разводка труб от котла к радиаторам может составить в среднем 300-500 рублей за погонный метр с учетом прокладки, подключения, прохода и штробы стен. Цены представлены ориентировочные для Москвы и региона.

Катушка Тесла своими руками

Трансформатор Тесла изобрел знаменитый изобретатель, инженер, физик, Никола Тесла. Прибор является резонансным трансформатором, вырабатывающим высокое напряжение высокой частоты. В 1896 году, 22 сентября Никола Тесла запатентовал свое изобретение как «Аппарат для производства электрических токов высокой частоты и потенциала». С помощью этого устройства он пытался передавать электрическую энергию без проводов на большие расстояния. В 1891 году Никола Тесла продемонстрировал миру наглядные эксперименты по передаче энергии от одной катушки к другой. Его устройство извергало молнии и заставляло светиться люминесцентные лампы в руках удивленных зрителей. Посредством передачи тока высокого напряжения высокой частоты ученый мечтал обеспечить бесплатной электроэнергией любое здание, частный дом и прочие объекты. Но, к сожалению, из-за большого потребления энергии и низкой эффективности, широкого применения катушка Тесла так и не нашла. Не смотря на это, радиолюбители из разных уголков планеты собирают небольшие катушки Тесла для развлечений и экспериментов.

Также катушки Тесла используют для проведения развлекательных мероприятий и Тесла шоу. В 1987 году советский радиоинженер Владимир Ильич Бровин изобрел генератор электромагнитных колебаний, названный в его честь «качер Бровина», используемый в качестве элемента электромагнитного компаса, работающего на одном транзисторе. Предлагаю вам собрать действующую модель катушки Тесла или качер Бровина своими руками из подручных материалов.

Список радиодеталей для сборки Катушки Тесла:

  • Провод эмалированный ПЭТВ-2 диаметр 0,2 мм
  • Провод медный в полихлорвиниловой изоляции диаметр 2,2 мм
  • Туба от силиконового герметика
  • Фольгированный текстолит 200х110 мм
  • Резисторы 2,2К, 500R
  • Конденсатор 1mF
  • Светодиоды 3-х вольтовые 2 шт
  • Радиатор 100х60х10 мм
  • Регулятор напряжения L7812CV или КР142ЕН8Б
  • Вентилятор 12 вольтовый от компьютера
  • Коннектор Banana 2 шт
  • Труба медная диаметр 8 мм 130 см
  • Транзистор MJE13006, 13007, 13008, 13009 из советских КТ805, КТ819 и аналогичные

Катушка Тесла состоит из двух обмоток. Первичная обмотка L1 содержит 2,5 витка медного провода в полихлорвиниловой изоляции диаметром 2,2 мм. Вторичная обмотка L2 содержит 350 витков в лаковой изоляции диаметром 0,2 мм.

Читайте также:  Температура при заливке бетона

Схема катушки Тесла или качера Бровина на одном транзисторе

Каркасом для вторичной обмотки L2 служит туба от силиконового герметика. Предварительно удалив остатки герметика, отрежьте часть тубы длиною 110 мм. Отступив по 20 мм от нижней и верхней части, намотайте 350 витков медного провода диаметром 0,2 мм. Провод можно добыть из первичной обмотки любого старого малогабаритного трансформатора на 220В, например, от китайского радиоприемника. Катушка мотается в один слой виток к витку, как можно плотнее. Концы провода следует пропустить во внутрь каркаса через предварительно просверленные отверстия. Готовую катушку для надежности покройте пару раз нитролаком. В поршень вставьте остро заточенный металлический стержень, подпаяйте к нему верхний вывод обмотки и закрепите термоклеем. После чего вставьте поршень в каркас катушки. От носика отрежьте колечко с резьбой, получится гайка, с помощью которой вы легко закрепите катушку на текстолитовой плате, накрутив получившуюся гайку на резьбу выходного отверстия тубы. В дне каркаса просверлите отверстие для светодиода и второго вывода обмотки.

В своей катушке я использовал транзистор MJE13009. Также подойдут Транзисторы MJE13006, 13007, 13008, 13009 из советских КТ805, КТ819 и другие аналогичные. Транзистор обязательно разместите на радиаторе, в процессе работы он будет очень сильно греться и по этому предлагаю установить вентилятор и немного усовершенствовать схему.

Поскольку, для питания катушки требуется напряжение более 12 вольт. Максимальную мощность катушка Тесла развивает при напряжении питания в 30 вольт. А так, как вентилятор рассчитан на 12 вольт, то в схему следует добавить регулятор напряжения L7812CV или советский аналог КР142ЕН8Б. Ну, а чтобы катушка выглядела более современной и привлекала внимание, добавим пару светодиодов синего цвета. Один светодиод подсвечивает катушку изнутри, а второй подсвечивает катушку снизу. Схема будет выглядеть так.

Схема катушки Тесла или качера Бровина с подсветкой и охлаждением

Все компоненты катушки Тесла разместите на печатной плате. Если вы не хотите изготавливать печатную плату, просто разместите все детали катушки Тесла на кусочке МДФ или рифленого картона от бумажной коробки и соедините между собой методом навесного монтажа.

Печатная плата катушки Тесла или качера Бровина с подсветкой и охлаждением

Готовая печатная плата будет выглядеть так. Один светодиод припаивается в центре, он подсвечивает пространство под печатной платой. Ножки сделайте из четырех глухих гаек, накрученных на винты.

Второй светодиод припаивается под катушкой, он будет подсвечивать ее изнутри.

Транзистор и регулятор напряжения обязательно намажьте термопастой и разместите на радиаторе размером 100х60х10 мм. Регулятор напряжения следует изолировать от радиатора с помощью теплопроводящих прокладок и изоляционных шайб.

Катушку вставьте в отверстие и затяните с обратной стороны пластиковой гайкой.

Первичную обмотку следует мотать в том же направлении, что и вторичную. То есть, если катушку L2 наматывали по часовой стрелке, значит катушку L1 тоже надо мотать по часовой стрелке. Частота катушки L1 должна совпадать с частотой катушки L2. Чтобы добиться резонанса, катушку L1 надо немного настроить. Делаем так, на каркасе диаметром 80 мм наматываем 5 витков оголенного медного провода диаметром 2,2 мм. К нижнему выводу катушки L1 припаиваем гибкий провод, к верхнему выводу прикручиваем гибкий провод, так чтобы его можно было перемещать.

Включаем питание, подносим неоновую лампу к катушке. Если она не светится, значит надо поменять местами выводы катушки L1. Далее опытным путем подбираем положение катушки L1 по вертикали и количество витков. Перемещаем провод прикрученный к верхнему выводу катушки вниз, добиваемся максимального расстояния на котором будет зажигаться неоновая лампа, это будет оптимальный радиус действия катушки Тесла. В итоге у вас должно получиться, как у меня 2,5 витка. После экспериментов изготавливаем катушку L1 из провода в полихлорвиниловой изоляции и припаиваем на место.

Наслаждаемся результатами своих трудов… После включения питания, появляется стример длиною 15 мм, неоновая лампочка начинает светиться в руках.

Так, снимали сагу Звездные войны… Вот он, секрет меча Джидая…

В автомобильной лампе появляется небольшая плазма исходящая от нити накаливания к стеклянной колбе лампы.

Чтобы значительно увеличить мощность катушки Тесла рекомендую изготовить торроид из медной трубки диаметром 8 мм. Диаметр кольца 130 мм. В качестве торроида можно использовать аллюминиевую фольгу скомканную в шарик, металлическую баночку, радиатор от компьютера и другие не нужные, объемные предметы.

После установки торроида мощность катушки значительно увеличилась. Из медной проволоки находящейся рядом с торроидом, появляется стример длиною 15 мм.

Теперь катушка Тесла может зажигать большие люминесцентные лампы на 220 вольт.

И даже светодиодные…

А это плазма возникающая в автомобильной лампочке при нахождении рядом с торроидом.

Делать торроид или нет, решать вам. Я всего лишь показал и рассказал вам о том, как я сделал катушку Тесла или качер Бровина на одном транзисторе, своими руками и о том, что у меня получилось. Моя катушка производит ток высокого напряжения высокой частоты, согласно законам физики. Спасибо Николе Тесла и Владимиру Ильичу Бровину за огромный вклад в науку!

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как работает катушка Тесла!

Как сделать катушку тесла своими руками?

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

Читайте также:  Уход за нубуком: правила и средства

  • 1 Составные части и принцип работы
  • 2 Подбор материалов и деталей
  • 3 Конструкция и сборка
  • 4 Включение, проверка и регулировка
  • 5 Мощная катушка Тесла

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.
  3. Вторичный контур.

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух — образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:

  1. Для питания потребуется 12 – 19 В постоянного напряжения. Подойдёт машинный аккумулятор, зарядное устройство от ноутбука или понижающий трансформатор с диодным мостом, для получения постоянного тока.
  2. Найдём детали для первичного контура:

— Переменный резистор R1 с номиналом 50 кОм. Для удачной сборки не забудьте соединить два контакта этого резистора согласно схеме.

— Резистор R2 с номиналом 75 Ом.

— Транзистор VT1 D13007 или советский аналог с n-p-n структурой.

— Радиатор для охлаждения транзистора можно поискать на мощных транзисторах в неисправной технике. Размер напрямую влияет на качество охлаждения.

— Первичная обмотка трансформатора Тесла. Проводником может быть простая медная трубка или провод диаметром 0,5–1 см. Обмотка делается плоской, цилиндрической или конической (рис. 2).

  • Вторичный контур состоит из катушки и, при необходимости, из терминала. Обмотку выполняем проводом с диаметром от 0,1 до 0,3 мм². Провод можно намотать на диэлектрическую ПВХ трубку. Длина трубки 25–40 см, а диаметр 3–5 см. Наматывать следует виток к витку: без пересечений, пропусков. Чтобы обмотка не сползла и не размоталась, рекомендуется закреплять намотанные участки. Количество витков от 700 до 1000 (рис. 3).
  • После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

    Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

    После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

    Конструкция и сборка

    Сборку делаем по простейшей схеме на рисунке 4.

    Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

    При подключении транзистора важно не перепутать контакты (рис. 5).

    Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

    Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

    Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

    Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

    Включение, проверка и регулировка

    Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

    1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
    2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
    3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
    4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

    Мощная катушка Тесла

    Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

    Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

    При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

    1. Увеличить диаметры катушек и сечение провода в 1,1 – 2,5 раза.
    2. Добавить терминал в форме тороида.
    3. Поменять источник постоянного напряжения на переменный с высоким повышающим коэффициентом, выдающим напряжение 3–5 кВ.
    4. Изменить первичный контур согласно схеме на рисунке 6.
    5. Добавить надёжное заземление.

    Трансформатор Тесла своими руками

    Трансформатор Тесла на MOSFET(SSTC)

    Автор: Товарищ Кутепов, zloycree@gmail.com
    Опубликовано 22.09.2014
    Создано при помощи КотоРед.
    Участник Конкурса “Поздравь Кота по-человечески 2014”

    Читайте также:  Утепление чердака: самые практичные виды теплоизоляции

    Поздравляю Кота с Днём Рождения, желаю тёплой батареи, свежего вискаса лосося и уютного шкафа! Ещё хочу сказать огромное спасибо всей администрации сайта за то, что поддерживаете сайт и предоставляете нам такой отличный источник качественной и интересной информации.

    Предисловие

    Ещё в начале этого лета я буквально заболел идеей построить трансформатор Тесла. В конце июля сделал сетевой качер, а вот на этой неделе я закончил делать SSTC(Solid State Tesla Coil – катушка Тесла на твёрдотельных элементах). Почему именно SSTC? Потому, что для этого типа не нужно ни дефицитных и дорогих конденсаторов, ни не менее дорогих ламп. Все детали были купленны в радиолюбительском магазине в областном центре, пришлось немнгого поездить на электричках, но постройка Трансформатора Тесла (далее – ТТ) обошлась мне всего в 800р и заняла 2 недели. Теперь обо всём по порядку.

    Основные понятия (те, кто представляют, что такое ТТ – могут не читать)

    Трансформатор Тесла – это устройство для получения высокого напряжения, запатентованное Н.Теслой в 1896г. Работает он по принципу резонанса – т.е. высокое напряжение на выходе достигается путём подачи на первичную обмотку импульсов в нужный момент. Подробнее об этом в своём видео рассказывает Сергей Булавинов.

    Изготовление трансформатора

    В первую очередь сделаем резонатор. Для этого нам понадобится:

    Труба пластиковая канализационная диаметром 110мм;

    Провод намоточный, я использовал ПЭВТЛ 1071 диаметром 0,15мм, но лучше подойдёт ПЭТВ2 диаметром 0,18мм.

    Гофрированный воздуховод 80*1500мм, но если есть возможность — лучше взять 60 или 70мм в диаметре;

    Пистолет с термоклеем;

    Шруповёрт и сверло 1,5мм.

    Для начала намотаем саму обмотку. Для этого отрезаем кусок пластиковой трубы длиной 200мм и со стороны, отрезанной на заводе — она немножко заострённая, сделаем бортик из термоклея. Он нужен для того, чтобы провод не сползал. Теперь сверлим два отверстия. Одно около бортика, другое — отступив 180мм.

    В отверстие около бортика продеваем начало нашего провода, оставляем внутри трубы около 20см — это — холодный конец обмотки. Теперь начинаем наматывать провод в произвольную сторону, фиксируя каждые 5см малярным скотчем. Наматываем обмотку длиной 180мм, отрезаем, оставляя «хвост» длиной сантиметров 10 и продеваем его через верхнее отверстие. Также заливаем отверстие термоклеем. Вроде всё просто, но это самая трудоёмкая часть, на неё у меня ушло два вечера. В итоге имеем это:

    Теперь изготовим тороид. Вокруг нашей трубы делаем «бублик» из воздуховода и оборачиваем стык алюминиевым скотчем.Надеваем этот «бублик» сверху на обмотку. Приклееваем. Теперь лудим маленькую площадочку на воздуховоде со внутренней стороны и припаеваем «хвост», который мы оставили. Резонатор готов. Теперь делаем первичную обмотку. Нам нужно:

    10см кусок пластиковой трубы 160мм в диаметре или подходящий по размеру цветочный горшок;

    Шуруповёрт, сверло 5-6мм;

    Пластиковые хомуты;

    Сам провод, примерно 4 метра, я использовал одножильный «мягкий» провод 6мм.

    Сверлим 4 отверстия на высоте 2см на противоположных сторонах. Теперь отмеряем от каждого отверстия ещё 4,5см вверх и сверлим ещё 4 отверстия. Также просверлим отверстие для провода заземления, который пойдёт ко вторичке. Должно получиться примерно так:

    Теперь пропускаем через отверстия пластиковые хомуты, наматываем 5 витков провода и фиксируем это хомутами. Получится что-то наподобие этого:

    Первичка готова, осталось лишь соединить её с резонатором. Для этого я вначале приклеил первичку к куску фанеры, пропустил через просверленное отверстие провод заземления и потом уже приклеил резонатор. Получилось вот так:

    Теперь к электроннике.

    Изготовление управляющей схемы

    В интернете есть много вариаций управляющих схем для SSTC, но все они состоят из перывателя, генератора сигнала, драйвера, трансформатора развязки затворов по напряжению и силовой части — моста или полумоста. За основу была взята эта схема:

    Но в связи с невозможностью достать драйвер MOSFET ucc37321, была изменена на такую:

    Да-да, схема не моя(ну почти), но в рунете нету гайдов по постройке SSTC, по этому не надо говорить, что это копипаста. На NE555 построен генератор прямоугольных импульсов, выполняющий роль прерывателя, первые 2 элемента 74hc14 приводит сигнал к ттл уровням, а 3 — инвертирует для замены комплиментарной пары из ucc37322 и ucc37321 на пару из двух ucc37322. TR1 – GDT. Намотан на ферритовом кольце марки р3, но лучше использовать N87, 3 обмотки по 7 витков. Для этого рекомендую использовать распущенную витую пару. Вот, собственно он: К PAD1 подключаем антенну-проволоку примерно 20см, в непосредственной близости от катушки. К PAD3 был подключён плюс блока питания на 16 вольт, к PAD3 – минус его-же. К PAD4 и PAD5 подключаются провода от первичной обмотки. А вот к PAD6 и PAD7 – питающее напряжение. Так как у меня нет ЛАТРа — я питал от советского понижающего трансформатора на 50в. Ток был достигал 3 ампера, по этому я поставил не очень мощную диодную сборку AC1, но если вы будете питать от сети или через ЛАТР — поставьте диодную сборку на достаточно большой ток. Электролитический конденсатор лучше заменить более ёмким, желательно на тысячу-две микрофарад, но у меня такового не было. Если трансформатор не начнет работать — поменяйте эти провода местами. Таким образом изменится полярность первички. Разводку приложил.

    Заключение

    Если вам интересно — можете рассчитать резонансную частоту трансформатора во этим формулам:

    В следующих своих статьях расскажу о беспроводной передаче энергии с помощью ТТ, для этого нам и понадобится знать резонансную частоту. Пока что всё.

    Также не забываем о технике безопасности! Я вот, всего за сутки существования этого ТТ получил 3 удара током. Будьте предельно осторожны! Хоть здесь и высокая частота, но напряжение действительно большое, да и ток может быть немалый. Ещё при первом пуске рекомендую накрыть силовую часть листом бумаги, чтобы в случае взрыва конденсатора или транзисторов вы не пострадали. Удачи в постройке, и берегите лапы!

    Читайте также:  Чем обработать бетонную отмостку от разрушения?

    Небольшая катушка Тесла своими руками

    Введение

    В 1997 году я заинтересовался катушкой Тесла и решил построить свою. К сожалению, я потерял интерес к ней, прежде чем я смог её запустить. Через несколько лет я нашел свою старую катушку, немного пересчитал её и продолжил строительство. И снова я забросил ее. В 2007 году друг показал мне свою катушку, напомнив мне о моих незавершенных проектах. Я опять нашел свою старую катушку, пересчитал все и в этот раз завершил проект.

    Катушка Тесла – это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.

    Высоковольтный трансформатор используется для зарядки конденсатора.

    Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.

    Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.

    Этапы строительства

    Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

    Вот основные шаги, с которых следует начать:

    1. Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
    2. Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
    3. Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
    4. Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
    5. Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
    6. Соедините все компоненты, настройте катушку, и все готово!

    Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!

    Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь – пока.

    Детали

    Катушка делалась в основном из тех деталей, которые были в наличии.
    Это были:
    4кВ 35mA трансформатор от неоновой вывески.
    0.3мм медная проволока.
    0.33μF 275V конденсаторы.
    Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.

    Вторичная обмотка


    Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя

    Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.

    Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
    L = [(2πf) 2 C] -1

    При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.

    Металлическая сфера или тороид

    Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.

    Первичная обмотка

    Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
    Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
    L = [(2πf) 2 C] -1
    С – емкость конденсаторов, F-резонансная частота вторичной обмотки.

    Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.

    Читайте также:  Стальные тросы и их особенности

    Конденсаторы


    Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом

    Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
    C = I ⁄ (2πfU)

    Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.

    Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.

    Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.

    Разрядник

    Мой разрядник это просто два винта с металлическим шариком в середине.
    Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.

    Характеристики

    Колебательный контур
    Трансформатор NST 4кВ 35мА
    Конденсатор 3 × 24 275VAC 0.33μF
    Разрядник: два шурупа и металлический шар

    Первичная обмотка
    Внутренний диаметр 17см
    Диаметр трубки обмотки 6 мм
    Расстояние между витками 3 мм
    Длина трубки первичной обмотки 5м
    Витки 6

    Вторичная обмотка
    Диаметр 7,5 см
    Высота 37 см
    Проволока 0.3мм
    Длина провода около 209m
    Витки: около 900

    Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

    Для тех, кому не терпится соорудить нечто необычное, что поразит окружающих, и сделать это своими руками – трансформатор Тесла будет идеальным вариантом. Процесс конструирования увлекает, а сочетание сразу нескольких физических эффектов в одном относительно простом устройстве приводит в восторг и любителей, и профессионалов.

    Несмотря на простоту устройства, смастерить теслу не так уж просто. Принцип трансформатора основан на катушках: первичка с малым количеством витков, которая создает искровой контур, и вторичная обмотка, представляющая собою прямую катушку провода. Резонанс частот колебания обмоток вызывает высокое переменное напряжение между двумя концами катушки.

    В статье расскажем подробнее, что из себя представляет этот прибор и как можно его собрать своими руками. В качестве бонуса в конце статьи добавлен интересный видеоматериал о трансформаторах Тесла и учебный материал “Способы определения параметров трансформатора Тесла” В. А. Колчановой.

    Как правильно называть устройство

    Существует много названий для трансформатора Тесла. Все они обозначают одно и то-же устройство. Самое корректное название по моему мнению — “Трансформатор Тесла”, хотя я не стесняюсь использовать и другие, такие как:

    1. Трансформатор Тесла.
    2. Катушка Тесла.
    3. Тесла.

    Также существуют сленговые названия трансформатора Тесла, некоторые из них:

    1. Катуха (Котуха).
    2. Койл.

    Часто трансформатор называют его типом – СГТЦ, ССТЦ и так далее.

    Принцип работы

    Трансформатор Тесла состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение, и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.

    Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

    Тесла обладает тремя основными характеристиками – резонансной частотой вторичного контура, коэффициентом связи первичной и вторичной обмоток, добротностью вторичного контура.

    Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности.

    Коэффициент связи определяет, насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

    Аналогия с качелями

    Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качели – это ток во вторичной обмотке, а высота подъема – наше долгожданное напряжение.

    Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха, и мы видим наши красивущий стример.

    Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора.

    Теперь рассмотрим ситуацию, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний. Такие качели и есть аналогом трансформатора Тесла. Чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше.

    Читайте также:  Цветок «Канны»: описание, фото, посадка и уход

    Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качелей (максимальной длинны стримера).

    Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем. Кратко о принципе работы трансформатора можно посмотреть в видеоролике.

    Основные виды катушек

    Сам Тесла изготавливал Трансформатор только одного типа – на разряднике (СГТЦ).

    С тех пор элементная база сильно улучшилась, и появилось множество разных типов катушек, по аналогии их продолжают называть катушками Тесла.

    Типы катушек принято называть из английских аббревиатур. Если название необходимо сказать на русском языке, английские аббревиатуры просто говорят русскими буквами без перевода. Самые распространенные типы катушек тесла рассмотрим ниже.

    SGTC (СГТЦ, Spark Gap Tesla Coil)

    Трансформатор тесла на разряднике. Самая первая и “классическая” конструкция (ее использовал сам Тесла). В качестве ключевого элемента использует разрядник. В маломощных конструкциях разрядник – просто два куска провода, находящихся на некотором расстоянии, а в мощных – сложные вращающиеся разрядники. Трансформаторы этого типа идеальны если вам нужна только большая длинна стримера.

    VTTC (ВТТЦ, Vacuum Tube Tesla Coil

    Трансформатор тесла на лампе. В качестве ключевого элемента используется мощная радиолампа. Такие трансформаторы могут работать в непрерывном режиме и выдавать толстые, “жирные” стримеры. Этот тип чаще всего используют для высокочастотных тесел, которые из-за характерного вида своих стримеров получили название “факельник”.

    SSTC (ССТЦ, Solid State Tesla Coil)

    Трансформатор тесла, в котором в качестве ключевого элемента используются полупроводники. Обычно это MOSFET или IGBT транзисторы. Этот тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых этой катушкой, может быть самый различный. Этим типом Тесел проще всего управлять (играть музыку, к примеру).

    DRSSTC (ДРССТЦ, ДРка, Dual Resonant Solid State Tesla Coil)

    Трансформатор с двумя резонансными контурами, в котором в качестве ключей используются полупроводники, в подавляющем большинстве случаев, это IGBT транзисторы. ДРССТЦ – самый сложный в изготовлении и настройке тип трансформаторов тесла. Характерная длинна стримеров трансформатора этого типа немного меньше, чем у SGTC, а управляемость немногим хуже, чем у SSTC.

    Для управления внешним видом стримеров придумали так называемый прерыватель. Изначально с помощью этого устройства останавливали катушку для того, чтобы дать возможность зарядится конденсатором и остыть разрядному терминалу, и, засчет этого, увеличить длину стримеров. Но в последнее время в прерыватели начали встраивать дополнительные функции, к примеру, научили катушки Тесла играть музыку.

    Основные детали катушки

    Несмотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты. Расскажем о основных деталях теслы сверху вниз.

    Тороид

    Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий. Выполняет три функции:

    1. Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.
    2. Вторая – накопление энергии перед образованием стримера. Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.
    3. Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

    От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

    Вторичка

    Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1. Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков. ВНИМАНИЕ, повторюсь еще раз. Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

    Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

    Мотают вторичку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

    Защитное кольцо

    Предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на тесле, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичка). Защитное кольцо заземляется на общее заземление отдельным проводом.

    Первичная обмотка

    Обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Также в качестве первички используют провода большего сечения.

    Читайте также:  Шкаф венге, особенности, палитра, материалы, для каких стилей подходит

    Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи. Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

    Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

    Заземление

    Очень важная деталь теслы. Очень часто задают вопрос – куда же бьют стримеры? Отвечаем на этот вопрос — стримеры бьют в землю! И таким образом они замыкают ток, показанный на картинке синим цветом.

    Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух. Меня спрашивали – обязательно ли заземлять теслу? Итак, ответ: заземление для теслы – обязательно.

    Теоретически, для теслы можно вместо заземления использовать так называемый противовес – искусственное заземление в виде большего проводящего предмета. Практических конструкций с противовесами очень мало.

    Область применения

    Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В таблице ниже представлены эффекты, возникающие во время работы трансформатора тесла.

    В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

    Схема для самостоятельной сборки

    В данной схеме минимум элементов, что нисколько не облегчает нашу задачу. Ведь чтобы она работала необходимо её не только собрать, но и настроить. Начнем с МОТов.

    Такой трансформатор есть в микроволновке. Представляет собой обычный силовой трансформатор с одной лишь разницей, что его сердечник работает в режиме, близком к насыщению.

    Это означает, что несмотря на малые размеры, он имеет мощность до 1,5 кВт. Однако, есть и отрицательные стороны у такого режима работы. Это и большой ток холостого хода, около 2-4 А, и сильный нагрев даже без нагрузки, про нагрев с нагрузкой я молчу. Обычное выходное напряжение у МОТа — 2000-2200 вольт при силе тока 500-850 мА.

    У всех МОТов «первичка» намотана внизу, «вторичка» сверху. Делается это для хорошей изоляции обмоток.

    На «вторичке», а иногда и на «первичке» намотана накальная обмотка магнетрона, около 3,6 вольт.

    Причём между обмотками можно заметить две металлические перемычки. Это — магнитные шунты.

    Основное их назначение — замкнуть на себя часть создаваемого «первичкой» магнитного потока.

    Таким образом ограничить магнитный поток через «вторичку» и её выходной ток на некотором уровне.

    КАПы подразумеваются высоковольтные керамические конденсаторы (серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14 —для установок высокой частоты!).

    Фильтр от ВЧ: соответственно две катушки, выпоняющие функцию фильтров от напряжения высокой частоты.

    В каждой 140 витков медного лакированного провода 0.5 мм в диаметре.

    Искровик, который нужен для коммутации питания и возбуждения колебаний в контуре.

    Если в схеме не будет искровика, то питание будет, а колебаний нет. А еще блок питания начинает сифонить через первичку — а это короткое замыкание!

    Пока искровик не замкнут — капы заряжаются. Как только замыкается — начинаются колебания. Поэтому ставят балласт в виде дроселей — когда искровик замкнут дросель мешает течь току от блока питания заряжается сам, а потом, когда разрядник разомкнется, заряжает капы с удвоенной злостью.

    Наконец-то очередь дошла и до самого трансформатора Теслы: первичная обмотка состоит из 7-9 витков провода очень большого сечения.

    Впрочем, подойдёт сантехническая медная трубка. Вторичная обмотка содержит от 400 до 800 витков, тут нужно подстраиваться.

    На первичную обмотку подаётся питание. У вторички один вывод надёжно заземлён, второй присоединён к ТОРУ (излучатель молний) .

    Тор можно изготовить из вентиляционной гофры. На этом все. Помните о безопасности и желаем удачи в самостоятельной сборке.

    Заключение

    В данной статье были рассмотрены основные факты о трансформаторе тесла и способ собрать устройство самостоятельно. Больше информации об этих трансформаторах можно узнать в учебном материале “Способы определения параметров трансформатора Тесла” В. А. Колчановой.

    Что такое катушка Тесла, как сделать самостоятельно

    Никола Тесла, как и многие другие физики, многие годы своей жизни посвятил изучению энергии токов и способам ее передачи, созданию уникальных разработок. Одной из них была катушка Тесла – это резонансный трансформатор, предназначенный для получения токов высокой частоты.

    Тесла, определенно, был гением. Именно он принес в мир использование переменного тока и запатентовал множество изобретений.

    Одно из них — знаменитая катушка, или трансформатор Тесла. Если у вас есть определенные знания и навыки, вы вполне можете самостоятельно создать катушку Тесла дома.

    Давайте выяснять, какова суть этого устройства и как создать его в домашних условиях, если вам вдруг этого очень сильно захотелось.

    Как уже отмечалось ранее, катушка Тесла представляет собой резонансный трансформатор. Назначение трансформатора — изменение значения напряжения электрического тока. Эти приборы бывают соответственно понижающие и повышающие.

    Более подробно подробно о трансформаторах, их общем устройстве и назначении читайте в отдельном материале.

    С точки зрения электроники катушка Тесла представляет собой две обмотки без общего сердечника и с разным числом витков.

    Напряжение на выходе такого трансформатора возрастает в сотни раз и может достигать значений порядка миллиона вольт.

    Читайте также:  Стиль хайтек в интерьере гостиной

    Изобретение Теслы не просто работает, а работает очень зрелищно.

    Включив трансформатор, можно наблюдать эффектные разряды (молнии), длина которых достигает нескольких метров.

    Из чего состоит катушка Тесла

    Прежде чем собирать катушку Тесла, рассмотрим ее составляющие и форму.

    Катушка Тесла выполняется в форме Тора (тороидальной фигуры, тороида).

    Тороидальные фигуры в первую очередь понятие из геометрии. Тор — поверхность, полученная путем вращения образующей окружности вокруг оси, лежащей в плоскости этой окружности. Лучше один раз взглянуть, чем пытаться себе представить. На рисунке ниже — тороидальные поверхности.

    Вот так выглядит классическая тороидальная фигура

    Тороид является важной составляющей катушки Тесла и изготавливается, как правило, из алюминиевой гофры.

    В составе этого устройства он выполняет следующие функции:

    1. уменьшает резонансную частоту;
    2. аккумулирует энергию перед образованием стримера;
    3. создает электростатическое поле, отталкивающее стример от вторичной обмотки трансформатора.

    Вторичная обмотка

    Вторичная обмотка — основная составляющая катушки Тесла, которую также называют просто «вторичка». Обмотка, как правило, содержит около 800-1200 витков, а мотают ее на трубах ПВХ, которые можно купить в обычном строительном магазине.

    Исходя из необходимого количества витков выбирается диаметр провода обмотки. Стандартное отношение длины вторичной обмотки катушки к ее диаметру — 4:1 или 5:1. Для того, чтобы витки не расползались, их покрывают лаком.

    Первичная обмотка и защитное кольцо

    Первичная обмотка (или первичка) катушки Тесла должна иметь низкое сопротивление, так как по ней будет проходить большой ток. Обычно ее изготавливают из проводов сечением более, чем 6 миллиметров. Также в качестве первичной обмотки часто используют медную трубу для кондиционеров.

    Форма первичной обмотки — цилиндрическая, плоская или коническая.

    Защитное кольцо — незамкнутый плоский виток заземленного медного провода. Кольцо устанавливается для того, чтобы стример из тороида, попав в первичную обмотку, не вывел из строя электронику.

    Простой генератор, катушка Теслы своими руками

    Сегодня я собираюсь показать вам, как я как сделать простую катушку Тесла своими руками в домашних условиях! Вы могли видеть такую катушку в каком то магическом шоу или телевизионном фильме.

    Если мы будем игнорировать мистическую составляющую вокруг катушки Тесла, это просто высоковольтный резонансный трансформатор который работает без сердечника. Так, чтобы не заскучать от скачка теории давайте перейдем к практике.

    Схема данного устройства очень простая

    Для создания нам нужны следующие компоненты :

    • источник питания, 9-21V , это может быть любой блок питания
    • маленький радиатор
    • транзистор 13009 или 13007, или почти любые транзисторы NPN с аналогичными параметрами
    • переменный резистор 50kohm
    • 180Ohm резистор
    • катушка с проводом 0,1-0,3, я использовал 0.19mm,, около 200 метров.

    Для намотки нужен каркас , это может быть любой диэлектический материал — цилиндр примерно 5 см и длиной 20 см. В моем случае это часть 1-1 / 2 дюйма ПВХ трубы из строительного магазина.

    Начнем с самой сложной части — вторичной обмотки. Он имеет 500-1500 мотков катушки , мой около 1000 оборотов. Закрепить начало провода с выводом и начать наматывать основной слой — для ускорения процесса можно это делать шуруповертом.

    Так же желательно вспрыснуть уже намотанную катушку лаком .

    Первичная катушка намного проще, я положил бумажную ленту липкой стороной наружу, в случае, чтобы сохранить способность передвигать позицию и намотайте ее на 10 витков провода.

    намотка трансформатора Тесла

    Вся схема собрана на макетной плате.

    Будьте осторожны при пайке переменного резистора! 9/10 катушки не работает из-за неправильно припаянного резистора .

    Таким образом, мы сделали катушку Теслы .

    Включите питание, и медленно поворачивайте переменный резистор.

    Это довольно слабая катушка, но каким-либо образом будьте осторожны и не размещайте рядом электронные устройства: такие как сотовые телефоны, компьютеры и т.д. с рабочей зоной катушки .

    Видео: Расчет трансформатора тесла на ютуб

    Катушка тесла из строчного трансформатора

    Список радиоэлементов

    Строчные трансформаторы являются одними из самых часто используемых любителями источников высокого напряжения, в основном из-за их простоты и доступности. В каждом CRT телевизоре (большом и тяжелом), который сейчас выбрасывают люди, есть такой трансформатор.

    В отличие от многих трансформаторов, которые есть в другой электронике, предназначенных для работы с обычным переменным током 50Гц, и понижающих трансформаторов, строчный трансформатор работает на более высокой частоте, около 16КГц, а иногда и выше.

    Многие современные строчные трансформаторы выдают постоянный ток. Старые строчные трансформаторы выдавали переменный ток, что позволяло делать с ними что угодно. Строчные трансформаторы переменного тока более мощные, так как в них нет встроенного выпрямителя/умножителя. Строчные трансформаторы постоянного тока легче найти, и именно они рекомендуются для этого проекта.

    Убедитесь, что ваш строчный трансформатор имеет воздушный зазор. Это значит, что сердечник не является замкнутым кругом, а скорее напоминает букву С, с зазором около миллиметра.

    Почти во всех современных строчных трансформаторах он есть, поэтому если вы используете современный строчный трансформатор, то это можно не проверять.

    В данной схеме используется транзистор 2N3055, который любят и ненавидят строители качеров на строчных трансформаторах. Их любят за их доступность и ненавидят за то, что они обычно воняют. Они склонны сгорать и довольно эффектно, но схема работает с ними невероятно хорошо. Плохую репутацию 2N3055 получил при использовании его в простых одно-транзисторных качерах, в которых на транзисторе присутствует высокое напряжение. В этой схеме добавлено несколько деталей, которые значительно увеличивают её выходную мощность. Теория работы схемы написана ниже.

    В этой схеме очень мало элементов, и все они описаны на этой странице.

    И многие детали могут быть заменены.

    Значение резистора 470 Ом можно поменять. Я использовал резистор на 450 Ом, полученный из трех соединенных последовательно резисторов по 150 Ом. Его значение не критично для работы схемы, но для уменьшения нагрева используйте максимальное значение резистора, при котором схема работает.

    Читайте также:  Чем можно разбавить масляную краску?

    Значение нижнего резистора может быть изменено для повышения мощности. Я использую резистор 20 Ом, собранный из двух последовательно соединенных резисторов по 10 Ом. Чем меньше его значение, тем выше температура и меньше время работы схемы.

    Конденсатор, находящийся рядом с транзистором(0.47 мкФ) может быть заменен для увеличения мощности. Чем больше его значение, тем больше выходной ток (и температура дуги) и меньше напряжение. Я остановился на конденсаторе 0.47мкФ.
    Число витков на катушке обратной связи (катушка с тремя витками) может изменять выходную мощность. Чем больше витков, тем больше сила тока, но не напряжение.

    Эта схема отличается от более распространенного одно-транзисторного качера тем, что в неё добавлен диод и конденсатор, который подключается параллельно диоду.

    Диод защищает транзистор от скачков напряжения обратной полярности, которые могут спалить транзистор. Можно использовать диод другого типа. Я использовал диод GI824, вынутый из телевизора.

    При выборе диода, обращайте внимание на напряжение и скорость переключения. Чтобы узнать, подходит ли ваш диод, найдите даташит на диод BY500, а потом на ваш диод и сравните параметры. Если ваш диод сопоставим с этим или лучше его, то он подходит.

    Конденсатор — это ключ к высокой выходной мощности.

    Транзистор генерирует частоту, установленную главным образом первичной катушкой и катушкой обратной связи. Конденсатор и первичная обмотка образуют LC цепь. LC цепь работает на определенной частоте, и если настроить схему так, чтобы эта частота была одинаковой с частотой транзистора, выходная мощность значительно увеличиться. Теория LC цепи похожа на теорию катушки Тесла. Эта схема может быть настроена путем изменения емкости конденсатора и количества витков на первичных/вторичных обмотках.

    Эта схема требует мощного блока питания, который описан ниже.

    Блок питания

    Схеме необходим мощный блок питания постоянного тока с выходным напряжением от 12 до 30 вольт и от 1 до желаемого вами количества ампер. Хорошей идеей является сделать регулируемый блок питания, чтобы схема получала именно такое напряжение, какое ей нужно. Если схема собрана неправильно, и используется блок питания вроде этого, схема сгорит. Но регулируемое напряжение необязательно для нормальной работы.

    Я использовал трансформатор на 300 Вт от усилителя. У него есть обмотки на 2, 4, 15, 30 и 60 вольт. Схема требует от 12 до 18 вольт для 2N3055. Я часто запускаю схему от 30В, но ненадолго, и транзистор установлен на мощный радиатор. При 15В, схема может работать бесконечно, так как после 30 минут работы, температура не превышала комнатную.

    Переменный ток с трансформатора идет на мостовой выпрямитель 400 Вт, установленный на радиаторе, а с него на конденсатор 7800 мкФ 70В, чтобы сгладить напряжение. Используя аналогичные компоненты, вы можете сделать свой блок питания.

    Также, в качестве блока питания можно использовать импульсные блоки питания, ИБП. Они есть в зарядных устройствах ноутбуков, ЗУ для автомобильных аккумуляторов и блоках питания компьютеров. Часто у них на выходе 12В и ток до 10А, что подходит для этой схемы.

    Монтаж

    Это очень простая по сборке схема. Моя сборка не является инструкцией и примером, но вы можете повторить её. Всё смонтировано на куске MDF, и элементы расположены свободно, чтобы свести к минимуму помехи от проводов, расположенных рядом и создать условия для охлаждения. Используйте многожильный провод. На многочисленных фотографиях подробно показаны различные элементы схемы, что зачастую полезнее слов.

    Одним из наиболее важных моментов в сборке является радиатор транзистора. 2N3055 изготовлен в корпусе ТО-3. Вы можете купить ТО-3 радиаторы, но их немного трудно найти. Я использовал радиатор от компьютерного процессора с отверстиями для его контактов на плоской стороне.

    Провода от контактов проходят между лопастями.

    Транзистор прикреплен к радиатору саморезами. Помните, что необходимо использовать термопасту между транзистором и радиатором. Провода, идущие к строчному трансформатору крепятся к нему при помощи крокодильчиков, чтобы можно было менять строчные трансформаторы для экспериментов.

    Другим важным моментом являются обмотки строчного трансформатора. Эмальная изоляция медной проволоки это хорошо, но лучше добавить дополнительную изоляцию между сердечником и обмотками. Сердечник может иметь острые края, и если эмаль обдерётся, то может произойти короткое замыкание. Я при намотке катушек снял металлический зажим, скрепляющий половинки трансформатора, намотал катушки, а потом установил его снова. На некоторых трансформаторах такое невозможно, и провод надо будет обматывать вокруг сердечника. Обмотки должны быть намотаны из фазы, что значит, что они мотаются вокруг сердечника в противоположных направлениях.

    При использовании этой схемы не проводите никаких манипуляций с подключенными проводами. Также проверяйте температуру транзистора и резисторов во время работы, но делайте это только при отключённом от сети устройстве. Если какой то элемент ощутимо теплый, то не включайте схему, пока он не остынет.

    Конденсаторы могут сохранять опасный заряд, поэтому будить осторожны.

    Кроме того, носите обувь на резиновой подошве при работе с высокими напряжениями и прикасайтесь к включённому устройству только одной рукой. Убедитесь в том, что схема была подключена к земле после работы, чтобы не получить электрический шок. Не пытайтесь настраивать включенную схему.

    С этой схемой можно делать многие вещи, например использовать её для питания катушки Тесла, плавления соли или просто забавного времяпровождения с электрическими дугами.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: