Ширина ленточного фундамента: минимальная и максимальная, пример расчета

Как рассчитать ширину фундамента

Застройщика всегда волнует, какой ширины должен быть фундамент ленточной конструкции. Чем больше ширина фундамента, тем больше надо вложить в его возведение трудозатрат и материалов. Любое излишество в расходовании строительных материалов увеличивает затраты на строительство объекта. Чтобы этого не происходило, нужно точно рассчитать ширину и высоту ленточного фундамента. Расчёт основания здания определяет глубину заложения, высоту стенок и ширину фундамента. Также необходимо определить количество арматуры и её диаметр.

Почему выбирают ленточный фундамент

По сравнению с другими конструкциями фундаментных оснований ленточная опора позволяет наиболее равномерно передать нагрузку от здания на грунт, поэтому, если результаты исследования прочности грунтового основания позволяют, выбирают ленточный фундамент.

Делать ленточный фундамент нужно по всему периметру дома и под внутренними несущими стенами. Если внутри дома устанавливают тяжёлое технологическое оборудование (котёл), то под него тоже подводят фундаментную ленту.

Виды ленточного фундамента

Среди оснований разной конструкции, застройщик для своего дома зачастую выбирает ленточный фундамент. Ленточное основание строения в основном бывает двух видов:

  • ленточный фундамент из сборного железобетона;
  • монолитная железобетонная лента.

Железобетонные фундаментные блоки

Сборный железобетон

При установке железобетонных блоков в проектное положение не нужно устраивать опалубку. Технология изготовления блоков включает в себя вибрирование и пропаривание бетона, что гарантирует их прочность.

При возведении ленточного фундамента из сборного железобетона на слабых грунтах блоки опирают на бетонные подушки (широкие плиты). Подушки увеличивают площадь опоры основания дома, тем самым снижают давление на почву.

Фундаментные блоки монолитного железобетона имеют буквенную маркировку – ФБС. Основные габариты ФБС указаны в таблице:

Длина, см Ширина, см Высота, см
238 30, 40, 50, 60 58
118 40, 50, 60 58
88 30, 40, 50, 60 58

Кроме того, промышленность выпускает блоки ФБП. Блоки представляют собой облегчённый вариант ФБС аналогичной высоты и ширины с квадратными пустотами. Длина ФБП 238 см. Блоки применяют для опирания внутренних несущих ограждений и стен подвала.

Недостатки и преимущества блочного фундамента

Расчёт фундамента из сборного железобетона не может быть экономически точным. Причиной этому является стандартизация размеров железобетонных блоков. Например, если расчёт определил толщину ленточного фундамента 550 мм, а высоту стенки 500 мм, то размер применяемых блоков будет соответственно 600 мм и 580 мм.

Наряду с этим, блочное основание обладает рядом преимуществ перед монолитной лентой:

  • значительное сокращение объёмов мокрых процессов;
  • отсутствие затрат на опалубочные работы, армирование, приготовление и заливку бетонного раствора;
  • всесезонность монтажных работ;
  • возведение основания дома производится в короткие сроки и не зависит от времени застывания бетона.

Ленточный фундамент из железобетонных блоков

Монолитная железобетонная лента

Расчёт монолитной ленты должен гарантировать возведение прочного и надёжного основания здания.

Если глубина заложения ленты зависит от уровня грунтовых вод, несущей способности грунтового основания, толщины промерзания почвы, то ширина ленточного фундамента определяется исходя из общей нагрузки от строения и толщины наружных стен.

Делать ленточный фундамент нужно такой ширины, чтобы общая площадь подошвы основания здания соответствовала сопротивлению грунтового основания.

Расчёт площади подошвы ленточного фундамента

Расчёт площади основания здания должен быть таким, чтобы под действием суммарной нагрузки дом не продавливал землю и не выталкивался наверх промёрзшей вспученной почвой. В нормативной документации можно найти формулу, как рассчитать площадь основания дома.

S – площадь подошвы фундамента;

k – коэффициент надёжности равный 1,2, то есть закладывается запас площади в 20%;

F – общая нагрузка на грунт;

k(c) – коэффициент состава грунта (пластичная глина – 1, песок – 1,4 и т.д.);

R – расчётное сопротивление грунта (берётся из таблицы СНиП).

Все элементы формулы имеют справочный характер, кроме суммарной нагрузки F. Суммарную нагрузку рассчитывают, используя справочные таблицы нормативной документации. Для этого применяют показатели среднего удельного веса конструкций кровли, стен и перекрытий.

Также в расчёт принимают такие данные, как снеговая нагрузка. В средней полосе России это составляет – 100 кг/м 2 , на севере страны – 190 кг/м 2 , на юге – 50 кг/м 2 .

В общей сумме учитывается вес самого фундамента и полезная нагрузка (техническое оборудование, заполнение помещений мебелью и прочее).

Видео «Самостоятельный расчёт опорной площади фундамента»:

Пример самостоятельного расчёта ширины ленточного фундамента

Чтобы лучше понять, как рассчитать ширину монолитной ленты, нужно рассмотреть это на примере. Первоначально нужно систематизировать исходные данные необходимые для расчёта.

  • размер дома в плане – 10 м х 10 м. Площадь застройки – 100 м 2 ;
  • внутри дома посередине расположена несущая стена;
  • стены кирпичные, толщиной в 1 кирпич – 250 мм и высотой 2,7 м. Удельный вес кирпичной кладки – 1600 кг/м 3 ;
  • кровля из шифера – 40 кг/м 2 ;
  • перекрытие из железобетонных плит – 500 кг/м 2 ;
  • глубина промерзания почвы – 700 мм;
  • уровень грунтовых вод – 2,2 м;
  • грунтовое основание – сухой суглинок средней плотности с расчётным сопротивлением 2 кг/см 2 ;
  • снеговая нагрузка – 50 кг/м 2;
  • полезная нагрузка – 20 кг/м 2 .

Все величины нормативных нагрузок взяты на основе справочных данных. Величина снеговой нагрузки определена из соответствующего раздела СНиП для южных районов России.

Определение суммарной нагрузки от дома на ленточный монолитный фундамент

На основе имеющихся исходных данных делают расчёт суммарной нагрузки на фундамент. Также определяют габариты монолитной ленты. Необходимо, чтобы застройщики сделали расчёт в следующем порядке:

Кровля

Крыша из шифера двускатная. С учётом уклона кровли и её свесов применяют коэффициент 1,1. Нагрузка от кровли составит: 100 м 2 х1,1х40 кг/м 2 = 4000 кг.

Кирпичные стены

Чтобы определить нагрузку от стен, зная их толщину, нужно подсчитать их длину. Длина стен по периметру составит: (10 х 4) – (0,25 х 4) = 39 м. Вычет удвоенной толщины кирпичной кладки сделан потому, что оси плана дома проведены посередине толщины стен. Длина внутренней несущей стены составит 10 – 0,25 = 9,75 м. Общая длина несущих стен будет равна 48,75 п.м.

Объём кирпичной кладки составит: 48,75 х 0,25 х 2,7 = 32,9 м 3 . Полная нагрузка от кирпичных стен равна: 32,9 х 1600 = 52 670 кг.

Перекрытие из железобетонных плит

Одноэтажный дом имеет перекрытия в двух уровнях. Это перекрытие цоколя и потолок в доме. Площадь перекрытий равняется: 100 х 2 = 200 м 2 . Соответственно нагрузка от плит перекрытий будет равна: 200 м 2 х 500 кг/м 2 = 100000 кг.

Снеговая нагрузка

Для расчёта снеговой нагрузки берут общую площадь кровли дома – 100 х 1,1 = 110 м 2 . Снеговая нагрузка составит: 110 м 2 х 50 кг/м 2 = 5 500 кг.

Полезная нагрузка

Норма этой нагрузки рассчитана на основе усреднённых величин веса технического оборудования, внутренних коммуникаций, отделки помещений, мебели и прочего. Удельный вес полезной нагрузки колеблется в пределах 18 – 22 кг/м 2 .

Расчёт полезной нагрузки производят на основе среднего показателя – 20 кг/м 2 . Вес составит: 100 м 2 х 20 кг/м 2 = 2000 кг.

Итого суммарная нагрузка на фундамент будет равна: 4 000 + 52670 + 100 000 +2 000 = 159 000кг.

Расчёт ширины монолитной ленты

Согласно вышеуказанной формуле определяют минимальную площадь подошвы фундамента:

(1,2 х 159 000 кг) : 2 кг/см 2 = 95 400 см 2 . То есть минимальная допустимая площадь подошвы основания дома будет равняться 10 м 2 .

Общая опорная площадь кирпичных стен определяется произведением длины в плане несущих стен на их толщину: 48,75 м х 0,25 м= 12,18 м 2 .

Из общепринятой практики минимальную ширину ленточного фундамента делают на 100 мм больше толщины стен.

В результате видно, что расчётная опорная площадь меньше минимальной опорной площади стен. Следовательно, ширина ленточного фундамента должна быть равна 250 мм + 100 мм = 350 мм.

Потребность в материалах для устройства монолитной ленты

Учитывая толщину промерзания грунта (0,7 м) и глубину уровня грунтовых вод (2,2 м), монолитную ленту делают мелко заглублённой – 1 м.

Для заливки опалубки используют бетон М 300. Объём потребности в бетонном растворе равен: 0,35 м х 1 м х 48,75 м= 17 м 3. . С учётом непредвиденных потерь потребность в бетоне составит 17,3 м 3 .

Арматурный каркас состоит из 4-х продольных арматурных стержней периодического профиля диаметром 12 мм. Так как поперечные стержни каркаса делают из тех же стержней, то общая потребность в арматуре составит: 50 м х 4 = 200 м.

Из всего вышесказанного можно сделать вывод о том, что высчитать ширину, высоту и длину ленточного фундамента для своего дома вполне под силу мало-мальски сведущим в строительном деле людям.

Как произвести вычисление ширины ленточного фундамента: минимальные и максимальные значения, а также ее расчет под кирпичный дом

28.10.2018 4,288 Просмотров

Ленточный фундамент является основным и самым надежным типом основания, использующимся в строительстве.

Он известен уже много сотен лет, в течение которых отрабатывались приемы возведения, собиралась статистика использования, проверялись качества и свойства ленты.

Это является основной причиной высокой популярности среди строителей — длительная практика пользования позволила выявить и устранить слабые места в технологии, отработать методику до совершенства.

Просчитаны и проверены на практике все размеры и конфигурация фундамента. Рассмотрим один из наиболее важных показателей ленты — ширину.

От каких факторов зависит ширина ленточного фундамента

Параметры ленточного фундамента полежат тщательному расчету и обусловлены несколькими факторами:

  • Типом грунта.
  • Высотой уровня залегания грунтовых вод.
  • Весом постройки.
  • Величиной снеговой нагрузки в зимнее время.
  • Материалом, из которого строится фундамент.

Ширина ленты привязана к несущей способности грунта. Рыхлый или неплотный грунт требует большой площади основания, при которой снижается удельное давление и возникает возможность строить достаточно крупные постройки.

В то же время, чем больше площадь основания, тем выше нагрузки пучения, воздействующие на него и создающие выталкивающее воздействие, заметно проявляющееся на мелкозаглубленных типах ленты.

В сложных случаях используют составное сечение ленты, когда опорный элемент — бетонная подушка — имеет большую площадь, позволяя рыхлому грунту прочно удерживать постройку без оседаний, а верхняя часть ленты намного уже, что позволяет уменьшить вес основания и существенно сэкономить стройматериалы.

Минимальная

В целом, минимальная ширина ленты — это расчетная величина, полученная в процессе вычисления параметров ленточного основания.

Методика расчета такова, что определяет не конкретный размер, а минимальное значение, меньше которого параметры ленты быть не могут.

Окончательный выбор обычно немного превышает минимум, на 10-15 % (иногда больше). Весь смысл расчетов заключается в определении минимально возможных значений, позволяющий наиболее экономичное и не затратное строительство.

Существует еще один способ определения толщины. Ленточный фундамент должен на несколько сантиметров (обычно 10 см) превышать толщину стен дома.

При этом, такое соотношение необходимо для того, чтобы стены имели надежное и достаточно широкое основание, позволяющее производить качественный монтаж или укладку.

В некоторых случаях применяют компромиссный вариант, когда верхняя площадка фундамента имеет увеличенную площадь для обеспечения условий строительства стен, а нижняя часть намного тоньше.

Это позволяется нормативами в случаях, когда, несмотря на большую толщину стен, их вес относительно мал и может удерживаться лентой малой толщины.

Для легких вспомогательных построек небольшого размера (баня, сарай) ширина ленты может составлять около 25 см на плотном грунте, а для кирпичного коттеджа в тех же условиях необходимо обеспечить ширину в 50 см.

Максимальная

Строительными нормами не регламентируется максимальная ширина ленты, поскольку в задачу любого проектировщика входит экономия, а не сверхнормативный расход строительных материалов.

Все методики расчета базируются на минимально возможных значениях и выбираются по принципу достаточности.

Предельных значений по максимуму не существует, так как из обычных соображений целесообразности никто не станет строить чрезмерно широкую ленту там, где достаточно гораздо меньших размеров. По образному выражению строителей, «никто не заинтересован закапывать деньги в землю».

Чаще всего принимают значения, на 10-15% больше расчетных, на случай изменения условий эксплуатации или с учетом гидрогеологических процессов, способных иногда преподносить не самые приятные сюрпризы. Единственным ограничивающим фактором может стать собственный вес ленты, оказывающий влияние на грунт.

Как правильно все рассчитать

Формула расчета площади основания выглядит следующим образом S>γn F/γc R0, где:

  • γn — коэффициент надежности, равный 1,2.
  • F — нагрузка на основание, т.е. общий вес дома, фундамента, снеговая нагрузка, вес имущества, людей и т.д., воздействующий на подстилающие грунтовые слои.
  • γc — коэффициент условий работы. В зависимости от типа грунта он составляет от 1 (глина) до 1,4 (песок).
  • R0 — условное сопротивление грунта. Табличное значение, находится в приложениях СНиП для данного типа грунта.

В результате этого расчета будет получена величина общей площади ленты. Для определения ширины основания (средней) полученное значение S надо разделить на общую длину ленты, включая внутренние стены и прочие участки периметра. Полученное значение покажет расчетную толщину основания ленты.

Это значение является минимальным. На практике его увеличивают, иногда в несколько раз.

Следует учесть, что приведенная формула дается лишь для ознакомления с методикой расчета. В любом случае эту работу должен выполнить грамотный и опытный специалист. Расчет фундамента — важная и ответственная процедура, обладающая большим количеством сложностей и специфических моментов.

Неподготовленный человек не может рассчитать такой проект, не допустив ряд грубых ошибок, следствием которых может оказаться разрушение дома. Как вариант, можно использовать онлайн-калькулятор, который позволяет получить параметры ленты по известным данным (тип грунта, расчетное или табличное значения сопротивления и т.д.).

Для уточнения полученных данных следует перепроверить полученные результаты на других подобных ресурсах.

Оптимальное расстояние для различным построек

Исходить только из величины или назначения построек нельзя, так как помимо веса дома важную роль играет тип грунта.

Чем плотнее подстилающие слои, тем меньшую ширину ленты можно делать при строительстве.

Для вспомогательных и хозяйственных строений ширина ленты допускается:

  • Плотный (скальный) грунт, глина — 25 см.
  • Суглинок — 30 см.
  • Песок, супеси — 35 см.
  • Мягкий слежавшийся песок — 40 см.
  • Очень мягкий песок — 45 см.

Для одноэтажных легких домов (дача, каркасный дом):

  • Плотный (скальный) грунт, глина — 30 см.
  • Суглинок — 35 см.
  • Песок, супеси — 40 см.
  • Мягкий слежавшийся песок — 45 см.
  • Очень мягкий песок — 50 см.

Для двухэтажных коттеджей:

  • Плотный грунт — 50 см.
  • Суглинок — 60 см.
  • Остальные типы грунтов не имеют усредненных показателей и требуют отдельного специализированного расчета.

Необходимо учитывать, что средние значения редко годятся для конкретных ситуаций, поскольку всегда существует масса дополнительных факторов, не учтенных в таблицах.

Воздействие этих факторов способно радикально изменить условия эксплуатации и потребовать отдельного расчета, иногда произведенного по совершенно иной методике.

Полезное видео

В данном разделе Вы сможете узнать о том, как выбрать ширину ленточного фундамента под кирпичный дом:

Заключение

Ширина ленточного фундамента является наиболее важным показателем, определяющим его прочность и способность выдерживать нагрузки.

Расчетные значения нередко оказываются некорректными, так как учесть все виды воздействий крайне сложно, а иногда — невозможно.

Для гарантии прочности и соответствия несущей способности предстоящим воздействиям, толщину ленты принято увеличивать на 15-30 % от расчетной величины.

Это позволяет иметь некоторый запас, необходимый в случаях внезапного изменения состояния грунта или иных причин.

Как правильно рассчитать ленточный фундамент – конкретный пример

Расчет ленточного фундамента состоит из двух основных этапов – сбора нагрузок и определения несущей способности грунта. Соотношение нагрузки на фундамент к несущей способности грунта определит требуемую ширину ленты.

Толщина стеновой части принимается в зависимости от конструктива наружных стен. Армирование обычно назначается конструктивно (от четырех стержней Ф10мм для одноэтажных газоблочных/каркасных и до шести продольных стержней Ф12мм для кирпичных зданий в два этажа с мансардой). Расчет диаметров и количества арматурных стержней выполняется только для сложных геологических условий.

Абсолютное большинство он-лайновых калькуляторов фундаментов позволяют всего лишь определить требуемое количество бетона, арматуры и опалубки при заранее известных габаритных параметрах фундамента. Немногие калькуляторы могут похвастаться сбором нагрузок и/или определением несущей способности грунта. К сожалению, алгоритмы работы таких калькуляторов не всегда известны, а интерфейсы зачастую непонятны.

Точный результат можно получить с помощью методики расчёта, изложенный в строительных нормах и правилах. Например, СП 20.13330.2011 «Нагрузки и воздействия», СП 22.13330.2011 «Основания зданий и сооружений». С помощью первого документа будем собирать нагрузки, второго – определять несущую способность грунта. Эти своды правил представляют собой актуализированные (обновленные) редакции старых советских СНиПов.

  1. Сбор нагрузок
  2. Таблица сбора равномерно распределенных нагрузок
  3. Расчёт несущей способности грунта
  4. Определение требуемой ширины подошвы («подушки») ленточного фундамента
  5. Осадка фундамента
  6. Заключение

Сбор нагрузок

Сбор нагрузок осуществляется суммированием их каждого вида (постоянные, длительные, кратковременные) с умножением на грузовую площадь. При этом учитываются коэффициенты надежности по нагрузке.

Значения коэффициентов надежности по нагрузке согласно СП 20.13330.2011.

Нормативные значения полезных нагрузок в зависимости от назначения помещения согласно СП 20.13330.2011.

К постоянным нагрузкам относят собственный вес конструкций. К длительным – вес не несущих перегородок (применительно к частному строительству). Кратковременными нагрузками является мебель, люди, снег. Ветровыми нагрузками можно пренебречь, если речь не идет о строительстве высокого дома с узкими габаритами в плане. Разделение нагрузок на постоянные/временные необходимо для работы с сочетаниями, которыми для простых частных строений можно пренебречь, суммируя все нагрузки без понижающих коэффициентов сочетания.

По своей сути сбор нагрузок представляет собой ряд арифметических действий. Габариты конструкций умножаются на объемный вес (плотность), коэффициент надежности по нагрузке. Равномерно распределенные нагрузки (полезная, снеговая, вес горизонтальных конструкций) формируют опорные реакции на нижележащих конструкциях пропорционально грузовой площади.

Сбор нагрузок разберем на примере частного дома 10х10, один этаж с мансардой, стены из газоблока D400 толщиной 400мм, кровля симметричная двускатная, перекрытие из сборных железобетонных плит.

Схема грузовых площадей для несущих стен в уровне перекрытия первого этажа (в плане.

Схема грузовых площадей для несущих стен в уровне кровли (в разрезе.

Некоторую сложность представляет собой сбор снеговой нагрузки. Даже для простой кровли согласно СП 20.13330.2011 следует рассматривать три варианта загружения:

Схема снеговых нагрузок на кровлю.

Вариант 1 рассматривает равномерное выпадение снега, вариант 2 – не симметричное, вариант 3 – образование снегового мешка. Для упрощения расчёта и для формирования некоторого запаса несущей способности фундаментов (особенно он необходим для примерного расчёта) можно принять максимальный коэффициент 1,4 для всей кровли.

Конечным результатом для сбора нагрузок на ленточный фундамент должна быть линейно распределенная (погонная вдоль стен) нагрузка, действующая в уровне подошвы фундамента на грунт.

Таблица сбора равномерно распределенных нагрузок

Наименование нагрузки Нормативное значение, кг/м2 Коэффициент надежности по нагрузке Расчётное значение нагрузки, кг/м2
Собственный вес плит перекрытия 275 1,05 290
Собственный вес напольного покрытия 100 1,2 120
Собственный вес гипсокартонных перегородок 50 1,3 65
Полезная нагрузка 200 1,2 240
Собственный вес стропил и кровли 150 1,1 165
Снеговая нагрузка 100*1,4 (мешок) 1,4 196

Всего: 1076 кг/м2

Нормативное значение снеговой нагрузки зависит от региона строительства. Его можно определить по приложению «Ж» СП 20.13330.2011. Собственные веса кровли, стропил, напольного перекрытия и перегородок взяты ориентировочно, для примера. Эти значения должны определяться непосредственным вычислением веса того или иного конструктива, или приближенным определением по справочной литературе (или в любой поисковой системе по запросу «собственный вес ххх», где ххх – наименование материала/конструкции).

Рассмотрим стену по оси «Б». Ширина грузовой площади составляет 5200мм, то есть 5,2м. Умножаем 1076кг/м2*5,2м=5595кг/м.

Но это ещё не вся нагрузка. Нужно добавить собственный вес стены (надземной и подземной части), подошвы фундамента (ориентировочно можно принять её ширину 60см) и вес грунта на обрезах фундамента.

Для примера возьмем высоту подземной части стены из бетона в 1м, толщина 0,4м. Объемный вес неармированного бетона 2400кг/м3, коэффициент надежности по нагрузке 1,1: 0,4м*2400кг/м3*1м*1,1=1056кг/м.

Верхнюю часть стены примем в примере равной 2,7м из газобетона D400 (400кг/м3) той же толщины: 0,4м*400кг/м3*2,7м*1,1=475кг/м.

Ширина подошвы условно принята 600мм, за вычетом стены в 400мм получаем свесы общей суммой 200мм. Плотность грунта обратной засыпки принимается равной 1650кг/м3 при коэффициенте 1,15 (высота толща определится как 1м подземной части стены минус толщина конструкции пола первого этажа, пусть будет в итоге 0,8м): 0,2м**1650кг/м3*0,8м*1,15=304кг/м.

Осталось определить вес самой подошвы при её обычной высоте (толщине) в 300мм и весе армированного бетона 2500кг/м3: 0,3м*0,6м*2500кг/м3*1,1=495кг/м.

Суммируем все эти нагрузки: 5595+1056+475+304+495=7925кг/м.

Более подробная информация о нагрузках, коэффициентах и других тонкостях изложена в СП 20.13330.2011.

Расчёт несущей способности грунта

Для расчёта несущей способности грунта понадобятся физико-механические характеристики инженерно-геологических элементов (ИГЭ), формирующих грунтовый массив участка строительства. Эти данные берутся из отчета об инженерно-геологических изысканиях. Оплата такого отчёта зачастую окупается сторицей, особенно это касается неблагоприятных грунтовых условий.

Среднее давление под подошвой фундамента не должно превышать расчётное сопротивление основания, определяемого по формуле:

Формула определения расчетного сопротивления грунта основания.

Для этой формулы существует ряд ограничений по глубине заложения фундаментов, их размеров и т.д. Более подробная информация изложена в разделе 5 СП 22.13330.2011. Ещё раз подчеркнем, что для применения данной расчётной методики необходим отчет об инженерно-геологических изысканиях.

В остальных случаях с некоторой степенью приближенности можно воспользоваться усредненными значениями в зависимости от типов ИГЭ (супеси, суглинки, глины и т.п.), приведенными в СП 22.133330.2011:

Расчетные сопротивления крупнообломочных грунтов.

Расчетные сопротивления песчаных грунтов.

Расчетные сопротивления глинистых грунтов.

Расчетные сопротивления суглинистых грунтов.

Расчетные сопротивления заторфованных песков.

Расчетные сопротивления элювиальных крупнообломочных грунтов.

Расчетные сопротивления элювиальных песков.

Расчетные сопротивления элювиальных глинистых грунтов.

Расчетные сопротивления насыпных грунтов.

В рамках примера зададимся суглинистым грунтом с коэффициентом пористости 0,7 при значении числа пластичности 0,5 – при интерполяции это даст значение R=215кПа или 2,15кг/см2. Самостоятельно определить пористость и число пластичности очень сложно, для приблизительной оценки стоит оплатить взятие хотя бы одного образца грунта со дна траншеи специалистом лаборатории, выполняющей изыскания. В общем и целом для суглинистых грунтов (самый распространенный тип) чем выше влажность, тем выше значение числа пластичности. Чем легче грунт уплотняется, тем выше коэффициент пористости.

Определение требуемой ширины подошвы («подушки») ленточного фундамента

Требуемая ширина подошвы определяется отношением расчетного сопротивления основания к линейно распределенной нагрузке.

Ранее мы определили погонную нагрузку, действующую в уровне подошвы фундамента – 7925кг/м. Принятое сопротивление грунта у нас составило 2,15кг/см2. Приведём нагрузку в те же единицы измерения (метры в сантиметры): 7925кг/м=79,25кг/см.

Ширина подошвы ленточного фундамента составит: (79,25кг/см) / (2,15 кг/см2)=36,86см.

Ширину фундамента обычно принимают кратной 10см, то есть округляем в большую сторону до 40см. Полученная ширина фундамента характерна для легких домов, возводимых на достаточно плотных суглинистых грунтах. Однако по конструктивным соображениям в некоторых случаях фундамент делают шире. Например, стена будет облицовываться фасадным кирпичом с утеплением толщиной 50мм. Требуемая толщина цокольной части стены составит 40см газобетона + 12см облицовки + 5см утеплителя = 57см. Газобетонную кладку на 3-5см можно «свесить» по внутренней грани стены, что позволит уменьшить толщину цокольной части стены. Ширина подошвы должна быть не менее этой толщины.

Осадка фундамента

Ещё одной жестко нормируемой величиной при расчёте ленточного фундамента является его осадка. Её определяют методом элементарного суммирования, для которого вновь понадобятся данные из отчета об инженерно-геологических изысканиях.

Формула определения средней величины осадки по схеме линейно-деформируемого слоя (приложение Г СП 22.13330.2011).

Схема применения методики линейно-деформируемого слоя.

Исходя из опыта строительства и проектирования известно, что для инженерно-геологических условий, характерных отсутствием грунтов с модулем деформации менее 10МПа, слабых подстилающих слоев, макропористых ИГЭ, ряда специфичных грунтов, то есть при относительно благоприятных условиях расчёт осадки не приводит к необходимости увеличения ширины подошвы фундамента после расчёта по несущей способности. Запас по расчётной осадке по отношению к максимально допустимой обычно получается в несколько раз. Для более сложных геологических условий расчёт и проектирование фундаментов должен выполняться квалифицированным специалистом после проведения инженерных изысканий.

Заключение

Расчёт ленточного фундамента выполняется согласно действующим строительным нормам и правилам, в первую очередь СП 22.13330.2011. Точный расчёт фундамента по несущей способности и его осадки невозможен без отчета об инженерно-геологических изысканиях.

Приближенным образом требуемая ширина ленточного фундамента может быть определена на основании усредненных показателей несущей способности тех или иных видов грунтов, приведенных в СП 22.13330.2011. Расчёт осадки обычно не показателен для простых, однородных геологических условий в рамках «частного» строительства (легких строений малой этажности).

Принятие решения о самостоятельном, приближенном, неквалифицированном расчёте ширины подошвы ленточного фундамента владельцем будущего строения неоспоримым образом возлагает всю возможную ответственность на него же.

Целесообразность применения он-лайн калькуляторов вызывает обоснованные сомнения. Правильный результат можно получить, используя методики расчёта, приведенные в нормах и справочной литературе. Готовые калькуляторы лучше применять для подсчета требуемого количества материалов, а не для определения ширины подошвы фундамента.

Точный расчет ленточного фундамент не так уж прост и требует наличия данных по грунтам, на которые он опирается, в виде отчета по инженерно-геологическим изысканиям. Заказ и оплата изысканий, а также кропотливый расчет окупятся сторицей правильно рассчитанным фундаментом, на который не будут потрачены лишние деньги, но который выдержит соответствующие нагрузки и не приведет к развитию недопустимых деформаций здания.

Как правильно рассчитать ленточный фундамент – конкретный пример

От чего зависит оптимальная ширина ленты

Размеры поперечного сечения ленточного фундамента определяются проектным расчетом и зависят от таких факторов как:

  • тип грунта на участке застройки;
  • глубина промерзания почвы;
  • уровень залегания грунтовых вод;
  • расчетный вес здания с учетом снегового покрова;
  • ветровые нагрузки на стены и кровлю;
  • материал, из которого будет возводиться основание.

Для сбора исходных данных приходится использовать справочную литературу, проводить гидрогеологические изыскания на участке.

Нормативные документы

Ширина ленточного фундамента, прежде всего, привязана к несущей способности грунта. Для плотной устойчивой почвы достаточно добавить по 70-100 мм с каждой стороны от толщины стены для получения оптимальной ширины ленты. А вот при неплотном и рыхлом грунте ее необходимо значительно увеличивать — в некоторых случаях она может достигать 900 мм.

Чтобы избежать большого расхода бетона или каменных материалов, применяют составные конструкции из широкой бетонной опоры внизу и верхней части ленты, ширина которой зависит от толщины стен. Основная проблема широких ленточных фундаментов заключается в невозможности их применения на подвижных пучинистых почвах и при высоком уровне грунтовых вод.

Нормативных документов, которые следует использовать при выполнении расчетов, три:

  • СНиП 2.01.07-85 – Нагрузки и воздействия;
  • СНиП 2.02.01-83 – Основания зданий и сооружений;
  • СП 131.13330.2012 – Строительная климатология.

В первом изложена методика расчета фундамента. Во втором приведены стандартные требования к фундаментным конструкциям. В третьем указана глубина промерзания грунта по климатическим зонам для большинства крупных населенных пунктов.

Получить данные о глубине залегания грунтовых вод, определить тип и структуру грунта можно только на основании гидрогеологических изысканий на участке. Их проводят специализированные организации, проводя пробное бурение на глубину ниже точки промерзания. Услуга эта не дешевая, но воспользоваться ею нужно, поскольку на надежности и безопасности не экономят.

Особенности устройства мелкозаглубленного фундамента


Специалисты советуют не устраивать мелкозаглубленный высокий фундамент, так как это делает его слишком жестким. К тому же, это ведет к перерасходу арматуры и бетона. Более низкий фундамент вполне справится с возложенными на него нагрузками и будет достаточно экономичным и надежным.

Когда решается вопрос, какая глубина ленточного фундамента под дом оптимальна, стоит подумать об утеплении мелкозаглубленного фундамента. Правильно сделанная тепло- и гидроизоляция может существенно сэкономить средства, одновременно создав надежное основание под дом.

Мелкозаглубленные фундаменты специально спроектированы для частных малоэтажных построек. Это, на сегодняшний день, самый распространенный вид фундаментов в частном домостроении.

Благодаря высокой прочности железобетона глубина залегания подошвы монолитного ленточного мелкозаглубленного фундамента может быть в пределах 50 см от поверхности земли. Но к этому значению следует добавлять высоту песчаной подушки, которая не должна быть менее 20 см.

Подушку делают из крупного песка, гравия или их смеси. Количество песка и гравия в процентном отношении должно быть 40: 60.

Высота фундамента над землей может варьироваться в пределах 40-50 см, в итоге, общая высота фундамента будет не выше одного метра. Для одноэтажных домов такого фундамента вполне достаточно, но для двухэтажных коттеджей и выше нужен фундамент усиленный и более глубокого залегания.


Минимальная ширина

Методика расчета размеров сечения ленты определяет не конкретное числовое значение ширины, а величину, меньше которой она быть не должна. Реальное основание обычно на 10-20% больше, а минимальная ширина ленточного фундамента нужна для определения оптимального значения ширины и снижения расходов на строительство.

Иногда, при плотном устойчивом грунте и получении в расчетах минимальной ширины фундамента 200-250 мм, применяют компромиссный вариант. Строят нижнюю часть узкой, а верхние 300-400 мм определяют толщиной стен. Такой способ можно часто увидеть при строительстве легких бань, веранд и хозяйственных построек.

Как рассчитать кубатуру фундамента

Учитывать массу фундамента лучше рассчитывая его объем: эта цифра вам пригодится при заливке фундамента: будете знать, сколько заказывать бетона или сколько материалов потребуется закупить.

Все исходные данные уже известны: высота, ширина и длина ленты. Их перемножаете, получаете кубатуру фундамента.

Например, посчитаем объем фундамента для рассчитанной ранее ленты: длинна 44 м, ширина 30 см (0,3 м), высота 1,75 м. Перемножаем: 44 м * 0,3 м * 1,75 м = 23,1 м3. Фактически расход, скорее всего, будет немного больше: порядка 25 кубов. На эту цифру и ориентируйтесь при заказе бетона.


Кубатура фундамента рассчитывается исходя из найденных (предполагаемых) размеров ленты: длины, высоты и ширины путем их перемножения

Максимальная ширина

В указанных выше нормативных документах понятие максимальной ширины фундаментной ленты отсутствует. Проектный расчет ширины ленточного фундамента должен быть направлен на обратное – определение оптимальных размеров с целью снижения финансовых затрат.

Однако, есть один важный нюанс, который следует учесть при строительстве зданий с обустройством подвала. В этих случаях ограничение максимальной ширины фундамента существует. Оно связано с весовым давлением на грунт и зависит от длины каждой отдельной стены, а также материала, из которого она сделана.

Для стен длиной до 3 метров фундаментная подошва должна быть не более:

  • бетонный монолит – 400 мм;
  • бетонные фундаментные блоки – 500 мм;
  • бутобетон – 600 мм;
  • кирпич полнотелый – 750 мм;
  • бутовый камень – 800 мм.

Если стены длиной более 3 метра, то максимально допустимая ширина составляет:

  • железобетонный монолит – 500 мм;
  • бетонные фундаментные блоки – 600 мм;
  • бутобетон – 800 мм;
  • кирпич полнотелый – 900 мм;
  • бутовый камень – 1000 мм.

Эти данные не являются нормативным требованием и взяты из практических наблюдений строителей. Поэтому их следует учитывать при расчетах, но не принимать за безусловные.

Какие данные потребуются для расчета

Кроме климатологических показателей региона, гидрогеологической структуры грунта и определения материала фундаментных стен, для разработки проекта требуется определить полный вес постройки, несущую способность грунта и длину стен.

Определение нагрузки от здания

Весовая нагрузка на ленточный фундамент определяется по простой формуле:

М+П+С+В, где:

  • М – мертвая масса здания, включающая вес всех строительных конструкций и элементов, в том числе фундамента;
  • П – полезная нагрузка или вес всего, что будет находиться внутри постройки и создавать давление на перекрытия;
  • С – максимально возможная масса снегового покрова зимой и в начале таяния;
  • В – ветровое давление на стены и кровлю.

Полученный расчетный результат следует умножить на коэффициент 1,2-1,25, обеспечивая 20-25% запаса прочности конструкции ленточного фундамента.

Несущая способность или сопротивление грунта

Этот показатель приводится в нормативной литературе и определяется ГОСТ 25100-95 «Классификация грунтов». Для наиболее распространенных типов почвы он составляет (в кг/см2):

  • суглинок – 1,5-2,8;
  • глина сухая плотная – 1,6-3,0;
  • песок мелкозернистый – 2,2-3,4;
  • среднезернистый – 2,5-3,6;
  • супесь – 2,6-3,6;
  • песок крупных фракций – 3,6-4,6;
  • гравий, щебень, галька – 5,1-6,5.

На показатель сопротивления весовым нагрузкам также влияет влажность, текучесть и пористость почвы, которые приходится учитывать при подготовке расчетных данных.

Сбор нагрузок на фундамент

На этом этапе суммируется масса всех строительных материалов, которые используются для строительства:

  • стен — внешних и внутренних (берется площадь общая, не учитывая вырезы на двери и окна);
  • перекрытий пола и материалов для него;
  • потолка и потолочного перекрытия;
  • стропильной системы и кровельных материалов;
  • лестниц и других внутренних элементов дома;
  • наружной тепло- ветро- изоляции и отделки;
  • цоколя и фундамента (для начала — ориентировочно);
  • крепежа (гвозди, саморезы, шпильки и т.д.)


Таблица усредненных нагрузок от разных типов узлов дома. ее можно использовать на предварительном этапе — когда вы оцениваете примерный уровень затрат

Как уже говорили, к этому моменту уже должен быть готов план здания с более-менее точными размерами. Расчет массы используемых строительных материалов несложен: находите площадь, на которой он будет расположен, умножаете на удельный вес, получаете массу.

Если рассчитываемый элемент прямоугольный, его площадь находите, перемножив длину сторон. Если считаете в метрах, получаете м2. Умножив на толщину материала в тех же единицах (в метрах) получаете объем в кубометрах — м3. Так работать будет удобнее: большая часть удельной массы стройматериалов дается в килограммах на кубометр (кг/м3). Перемножив найденный объем с удельным весом материала получаете массу материала для этой плоскости.

Пример расчета массы стены

Чтобы стало понятнее, приведем пример. Посчитаем сколько весить будет стена из профилированного соснового бруса 150*150 мм, с обшивкой из липовой вагонки толщиной 14 мм, обрешетка из соснового бруска 50*20 мм. Стена длиной 4 м и высотой 2,8 м.

Удельный вес закупленного соснового бруса (может быть разным) 570 кг/м3, вагонки 530 кг/м3, бруска 510 кг/м3.

Пример расчета нагрузки стены

Площадь стены: 4 м * 2,8 м = 11,2 м2.

Объем бруса в стене будет 11,2 м2 * 0,15 м (толщина бруса) = 1,68 м3.

Умножив объем на удельный вес бруса, получим массу стены: 1,68 м3 * 570 кг/м3 = 957,6 кг.

Теперь находим объем вагонки на стене: 11,2 м2 * 0,014 м (толщина вагонки) = 0,16 м3.

Сколько весит вагонка узнаем, умножив ее удельный вес на объем: 0,16 м3 * 530 кг/м3 = 84,6 кг.

Количество обрешетки считают по-другому: определяем сколько планок прибивается. Мы будем прибивать обрешетку вдоль с шагом 60 см. Получится 5 планок длиной 4 м. Погонных метров всего будет 20. Теперь находим объем: 20 м.п. * 0,05 м * 0,02 м = 0,02 м3.

Теперь находим массу обрешетки: 0,02 м3 * 510 кг/м3 = 10,2 кг.

Теперь находим массу всех материалов для стены: 957,6 кг + 84,6 кг + 10,2 кг = 1052,4 кг.

Думаем, принцип понятен. Но считать так каждую стену долго. Дальше можно сделать проще: определить, сколько весит один квадратный метр стены, затем найти площадь всех стен, имеющих такую же отделку и получить общую их массу.

Мы рассчитали, что масса стены площадью 11,2 м2 будет 1052,4 кг. Получается, что один квадрат весит 1052,4 кг / 11,2 м2 = 93,96 кг/м2. Теперь посчитав, площадь всех стен с такой отделкой, можем найти их общую массу. Пусть общая их площадь 42 м2. Тогда весить они будут 42 м2 * 93,96 кг/м2 = 3946,32 кг.

По такой методике находите массу всех перечисленных элементов. Если они имеют сложную геометрию, разбиваете их на простые фигуры и так определяете площадь. С остальным проблем быть не должно.

Полезная нагрузка дома

Кроме стройматериалов на фундамент будет давить вся обстановка в доме: мебель, техника, люди и т.д. Считать все это очень уж долго, так что при планировании принимают, что на один квадратный метр площади полезная нагрузка составляет 180 кг/м2. Чтобы узнать общую полезную нагрузку дома, его площадь (всех этажей) умножаете на эту цифру.


В общую нагрузку от дома необходимо добавить нагрузку от всех предметов интерьера, техники и т.д.

Снеговая нагрузка

В большинстве регионов необходимо еще учитывать нагрузки на фундамент от снега. Снеговые нагрузки определены по регионам (смотрите фото), их значения приведены в таблице.


Снеговые нагрузки по России (для увеличения размеров картинки щелкните по ней правой клавишей мыши)

Но так как кровли разные, а них скапливается разное количество снега. Потому в зависимости от угла ската применяются коэффициенты:

  • угол наклона меньше либо равен 25° — коэффициент равен 1 (снеговая нагрузка берется из таблицы без изменений);
  • угол наклона больше либо равен 60° — коэффициент равен 0 — снеговая нагрузка не учитывается.

Во всех остальных случаях (угол наклона кровли от 25° до 60°) значения выбирают от 0 до 1 (строят график и по нему определяют коэффициент).

Как рассчитать снеговую нагрузку на кровлю? Вы нашил свой регион, знаете среднюю нагрузку на квадрат кровли, определили коэффициент. Теперь необходимо общую площадь кровли умножить на все эти цифры.


Снеговые нагрузки по Украине (для увеличения размеров картинки щелкните по ней правой клавишей мыши)

Пример: пусть снеговая нагрузка в регионе 180 кг/м2, общая площадь кровли 65 м2, коэффициент учета угла ската кровли 0,82 (угол наклона около 30°). Находим снеговую нагрузку: 65 м2 * 180 кг/м2 * 0,82 = 9594 кг.

Эту нагрузку необходимо будет добавить к массе дома и его полезной нагрузке.

Пример расчета ширины подошвы под ленточный фундамент

Определение размера опорной фундаментной подошвы производится по формуле:

Ширина = масса здания : длина стен : сопротивление грунта

Предположим, что первоначальные расчеты при сборе данных показали:

  • здание из газобетонных блоков с учетом полезной, снеговой и ветровой нагрузки создает весовое давление 165800 кгс;
  • общая длина фундаментной ленты в доме 10 х 8 метров с одной поперечной перемычкой составляет 44 метра или 4400 см;
  • грунт – сухая плотная глина с несущей способностью 1,9 кг/см2.

На основании этих показателей выполняем расчет ширины ленты для дома из газобетона:

165800 : 4400 : 2,1 = 19,83 см, округляем до 20 см

Получается, минимальная ширина ленты может быть равна 20 см. Однако, толщина газобетонных блоков 300 мм и фундамент должен выступать за края стены как минимум на 5 см. Следовательно, оптимальная ширина подошвы будет равна 400 мм, что обеспечит двойной запас прочности конструкции. К слову, полный просчет ленточного основания представлен тут, а вопрос оптимальной глубины заложения ленты рассмотрен здесь.

Какая толщина утеплителя мансардной крыши нужна, в зависимости от материала

Мансарда представляет собой обустраиваемое под кровлей помещение, используемое для постоянного проживания либо просто для приятного времяпровождения. Мансарды пользуются широкой популярностью во многих странах, однако для комфортного обустройства их очень важное значение имеет оборудование теплоизоляционной системы, препятствующей потерям тепла через кровельные скаты.

Основные требованию к утеплителю для мансардной крыши

Для утепления кровли мансарды могут применяться различные теплоизоляционные материалы, при выборе между которыми уделяют внимание следующим характеристикам:

  • низкая теплопроводность;
  • высокая морозостойкость и устойчивость к размораживанию;
  • устойчивость к значительным температурным колебаниям;
  • низкая гигроскопичность, минимальное впитывание влаги;
  • негорючесть;
  • длительный период эксплуатации.

С другой стороны, при выборе утеплителя имеют значение и такие факторы, как наклон и форма кровельных скатов, климатические и погодные условия местности, предназначение обустраиваемой мансарды и т. д. От подобных нюансов зависит не только предпочтение того или иного материала, но и то, какая плотность утеплителя нужна для мансарды, толщина утеплителя мансардной крыши и некоторые другие параметры.

Основные материалы для обустройства теплоизоляции мансарды

Выбор утеплителей на современном строительном рынке довольно велик, однако для теплоизоляции крыши мансарды наиболее часто применяются следующие из них:

  • минеральная вата;
  • пенопласт;
  • пенополиуретан.

Каждый из этих материалов имеет свои особенности, преимущества и недостатки, на которых стоит остановиться более подробно. Давайте разберемся, какой утеплитель лучше для крыши мансарды, чтобы правильно сделать выбор.

Минеральная вата – плотность и толщина минваты

Минеральная вата является едва ли не самым распространенным утеплителем для мансардных крыш вследствие своей низкой стоимости и хороших теплоизоляционных качеств. Помимо этого, плюсами данного материала являются также огнестойкость, хорошая воздухопроницаемость и малая гигроскопичность. С другой стороны, теплоизоляционные характеристики минеральной ваты значительно снижаются при намокании, что делает обязательным обустройство для неё водоизоляционной и пароизоляционной мембран.

Минеральная вата имеет несколько разновидностей:

  • стекловата;
  • шлаковата;
  • базальтовая, или каменная вата.

Стекловата изготавливается из тончайших волокон стекла толщиной в 5-15 микрон и длиной в 15-50 миллиметров. Имеет упругую и прочную структуру, и требует большой осторожности в работе: во избежание раздражения, при ее укладке надевают защитный костюм, перчатки, очки и респиратор. Устойчива к воздействию температур от минус 60 до плюс 450-500 °C.

Шлаковата, изготавливаемая из доменных шлаков, содержит в своем составе волокна толщиной в 4-12 микрон и длиной примерно в 16 миллиметров. Данный материал выдерживает нагревание до 300 °C, однако малоэффективен при обустройстве теплоизоляции мансарды вследствие своей высокой гигроскопичности. Кроме того, шлаки, обладающие остаточной кислотностью, могут агрессивно воздействовать на металлические поверхности, что тоже является существенным недостатком. Минусами шлаковаты являются также ее хрупкость и «колючесть», создающая неудобства при работе с ней голыми руками.

Базальтовая (каменная) вата изготавливается из габбро-базальта или диабаза с композитными и связующими добавками. Волокна её имеют примерно такие же размеры, как и у шлаковаты. По технологическим характеристикам данный материал превосходит все другие разновидности минеральной ваты, а потому особенно часто используется для теплоизоляции мансардных крыш. Устойчива при нагревании до 600 °C (некоторые виды – до 1000 °C). При использовании данной разновидности упругость и плотность минваты для утепления мансарды достаточны, чтобы материал не сминался и не оседал при монтаже на скатах.

Что же касается необходимой толщины минваты для утепления мансарды, то она во многом зависит от климатических условий, составляя в среднем 15-30 сантиметров. Понятно, что в регионах с более холодным и влажным климатом толщина утеплителя для крыши мансарды должна быть относительно больше.

Пенопласт

Пенопласт представляет собой современный теплоизоляционный материал на основе пенополистирола. По своей структуре это затвердевший вспененный полистирол, внутри которого имеется множество воздушных пузырьков.

Преимуществами пенопласта являются лёгкий вес, отличные теплоизоляционные характеристики, низкая гигроскопичность и хорошие звукоизолирующие свойства, которые в сочетании с доступной стоимостью делают его одним из самых предпочтительных материалов для утепления. В то же время, недостатками пенопласта, которые следует учитывать при обустройстве мансарды, являются горючесть, неустойчивость к высоким температурам и к воздействию ультрафиолетовых лучей, а также низкая прочность.

Для повышения эксплуатационных характеристик некоторые производители обрабатывают изделия из пенопласта антипиренами, что увеличивает срок их службы на несколько лет, что делает утепление мансарды пенопластом экономически выгодным.

Следует сказать и о том, какой слой утеплителя нужен для мансарды в случае использования данного материала. Необходимая толщина его для большинства климатических зон составляет 15-20 сантиметров, однако в морозных регионах есть смысл увеличить ее до 25-30 сантиметров.

При обустройстве теплоизоляции мансардной кровли из пенопласта важно обеспечить хорошую вентиляцию подкровельного пространства, поскольку данный материал не является «дышащим». В противном случае это может привести к возникновению конденсации, появлению плесени и гнилостных процессов.

Пенополиуретан

Пенополиуретан представляет собой полимерный утеплитель, являющийся разновидностью вспененной пластмассы с ячеистой структурой. Ячейки заполнены газообразным веществом, что обусловливает эффективные теплоизоляционные свойства данного материала.

Преимуществами пенополиуретана являются универсальность, низкая горючесть, отсутствие гигроскопичности, устойчивость к агрессивным химическим воздействиям, низкая теплопроводность и долговечность. Хотя по теплоизоляционным характеристикам он немного уступает пенопласту и минеральной вате, но зато по сроку службы превосходит их в несколько раз.

Пенополиуретановые утеплители выпускаются как в форме плит, так и в виде напыляемых жидких смесей. Последний вариант является наиболее универсальным и эффективным: его можно наносить на любой материал, закрывая при этом все щели и зазоры.

Следует отметить, что если в случае плиточных материалов расчет утеплителя для мансарды может представлять определённые сложности, то при напылении жидкого пенополиуретана какие-либо специальные расчеты не требуются. Весь процесс легко может быть осуществлен своими руками в течении короткого времени – достаточно лишь наличия теплоизоляционного состава и оборудования для его распыления.

Еще один важный плюс состоит в том, что жидкий пенополиуретан напыляется без швов и стыков, полностью повторяя сложные формы наклонных и прочих поверхностей. Это обусловливает значительно более эффективную теплоизоляцию. Поэтому, если говорить о том, какая толщина утеплителя должна быть на мансарде, то здесь обычно достаточно слоя в 10-15 сантиметров.

Плиточные формы пенополиуретана также находят применение для утепления мансардных крыш, но обладают несколько меньшим удобством и практичностью.

Прочие виды утеплителей для мансардных крыш

Наряду с перечисленными, иногда используются и другие материалы для теплоизоляции мансардных кровель, хотя распространённость их не так велика.

Так, например, в некоторых регионах не утратил своего значения старый метод – утепление войлоком. Кроме того, в последние годы набирают популярность и новые виды эффективных теплоизоляционных материалов, появившихся на строительном рынке сравнительно недавно. Сюда можно отнести, например, эковату и современные стекловолоконные утеплители. Стоит также отметить, что наряду с рассмотренными видами утеплителей нередко применяются их фольгированные разновидности, стоимость которых несколько дороже.

Понятно, что расчет утепления мансарды может иметь определённые особенности в зависимости от вида используемого утеплителя и ряда прочих факторов.

Так, например, ответ на вопрос – какой толщины должен быть утеплитель мансарды – можно в общих чертах сформулировать следующим образом:

  • чем больше теплопроводность материала, тем большей должна быть толщина слоя теплоизоляции;
  • для местностей с более мягким климатом требуется утеплитель меньшей толщины, для более суровых климатических зон – наоборот;
  • большое количество стыковых участков и швов способствует потерям тепла, обусловливая потребность в большей толщине утеплителя.

Правильный выбор материала для теплоизоляции и грамотно произведенные расчеты служат основой для обеспечения температурного комфорта в мансардном помещении, в прямом смысле слова способствуя теплой атмосфере в нем в любое время года.

Утепление скатной кровли: особенности кровельного пирога мансарды

Можно долго спорить о целесообразности строительства домов с мансардными этажами и так и не прийти к общему знаменателю. Но то, что такие конструкции повсеместно распространены и в Лету кануть явно не собираются – факт. Главной особенностью мансардного этажа является отсутствие полноценных стен, вместо которых ограждающий контур сформирован скатами крыши и фронтонными стенами. И уровень комфорта в этих помещениях во многом зависит не столько от квадратуры и планировок, сколько от правильного кровельного пирога. Как и чем правильно утеплять скатную кровлю, разберемся при помощи специалиста компании ROCKWOOL.

Содержание

Что собой представляет кровельный пирог мансардной крыши

Конструктивно все крыши делятся на два основных вида:

  • «холодные» – не предполагают устройства на чердаке жилых помещений, кровельный пирог не включает теплоизоляцию;
  • «теплые» – сразу или в дальнейшем ориентированы на эксплуатирование пространства под чердаком в качестве жилого либо хозяйственного.

Независимо от конструктива и архитектуры, для каждого дома крыша – это один из важнейших функциональных защитно-декоративных элементов. Она защищает здание от внешних атмосферных факторов и различных механических воздействий, а также, предотвращает отток тепла из здания в холодное время года. Тепло всегда стремится вверх и если его не сдерживать, теплопотери только сквозь крышу могут достигать 35 %, а это значительный перерасход энергоносителей и средств на эксплуатацию. Чтобы минимизировать теплопотери, а, следовательно, и расходы, при строительстве или реконструкции обязательно используют специализированные теплоизоляционные материалы. С той разницей, что в случае с холодным чердаком утепляют перекрытие, а при обустройстве жилой мансарды – и перекрытие, и скаты крыши. При утеплении перекрытия холодного чердака в него закладывается максимально возможный слой, чтобы предотвратить отток тепла. В перекрытие же теплой мансарды закладывается меньший слой теплоизоляции, в большей степени для повышения акустического комфорта, основная же «линия обороны» как раз в скатах. Кровельный пирог мансарды состоит из нескольких функциональных слоев.

  • Пароизоляция – предотвращает попадание пара, выделяемого в результате жизнедеятельности, в последующие слои крыши. Даже непроницаемые пленки с проклеенными стыками не гарантируют абсолютной герметичности и задерживают основную массу испарений, но некоторое количество все же поступает внутрь.
  • Теплоизоляция – основной функциональный слой, сформированный из специализированного теплоизоляционного материала. Предотвращает отток теплого воздуха в холодное время, перегрев подкровельного пространства в жаркий сезон, а также, обеспечивает акустический комфорт, что не менее важно для жилых помещений. Толщина утеплителя подбирается исходя из нормативов по теплосопротивлению ограждающих конструкций для конкретного региона проживания и типа теплоизоляции. Для основной массы регионов и большинства материалов минимальным считается слой в 200 мм, для южных областей – от 150 мм.

  • Гидроизоляция – защитные мембраны, укладываемые поверх утеплителя под финишное кровельное покрытие, также называют ветрозащитными. Паропроницаемые мембраны препятствуют попаданию влаги из вне, предотвращают конвективный теплоперенос (выветривание) и выпускают пар из утеплителя. Он удаляется за счет вентиляции подкровельного пространства. Использование в качестве гидроизоляции и ветрозащиты непроницаемых пленок постепенно сходит на нет, так как при их применении необходимо устройство двух вентиляционных зазоров: между утеплителем и пленкой, и между пленкой и кровельным покрытием. Тогда как мембраны укладывают непосредственно на утеплитель без зазора, что упрощает монтаж.

Залог энергоэффективности конструкции и долгих лет эксплуатации – сухой утеплитель, так как в увлажненном виде он не теряет свои теплоизоляционные свойства. Утеплитель поддерживается в исходном состоянии благодаря пароизоляции, задерживающей основную массу паров изнутри и гидроизоляции, не допускающей его намокания снаружи.

Каменная вата для теплоизоляции мансард

Одним из наиболее распространенных утеплителей в скатных крышах является каменная вата, как оптимальный по соотношению характеристик и стоимости материал. Ей присущи такие свойства, как:

  • низкая теплопроводность;
  • биостойкость;
  • огнестойкость;
  • негорючесть;
  • звукопоглощение;
  • минимальная гигроскопичность;
  • долговечность;
  • практичность (и удобство монтажа, и сохранение исходных параметров на весь срок службы).

При прохождении сквозь волокна паров, каменная вата не увлажняется, ее теплопроводность и объем остается без изменений, то есть, в процессе эксплуатации утеплитель остается сухим и эффективным и не теряет своих свойств.

Прошу дать совет, как лучше утеплить мансарду брусового дома 10х10 м, Средний Урал. Пирог сейчас стандартный: гибкая черепица, вентзазор 50 мм, мембрана, стропила 200х50 мм. Мансарда низкая довольно, занижать сильно не хочу потолок.

  1. 200 мм каменной ваты. Потом сразу чистовую отделку. Стропила получаются как мостики холода. Но много ли они тепла отбирают, учитывая, что 200 мм, да и сам дом у меня из бруса 190 мм, по сути, как мостик холода.
  2. 50 мм зазор между ватой и мембраной, 150 мм ваты, на стропила уже 30 мм пир плита. Дороже получается, но мне кажется теплее должно быть, чем 200 мм ваты. Минус, что потолок занизится чуть больше.

Еще какие варианты не сильно дорогие есть? Я бы конечно хотел задуть все ППУ 150-200 или пир плитами все выложить, но цена уж очень высокая получается. Может осилить все пир плитами на 100 мм? Судя по рекламируемой теплопроводности – это будет как 200 мм ваты.

Определенно, первый вариант. 200 мм каменной ваты, которая является наиболее эффективным паропроницаемым и дышащим материалом. Все остальные материалы будут работать как паробарьер, поэтому нецелесообразно миксовать данные утеплители. Лаги не являются мостиками холода, так как коэффициент теплопроводности дерева достаточно низок, что говорит о его эффективности.

Технология утепления скатных крыш

В основной массе, когда мансардный этаж изначально запланирован в качестве жилого, утепление выполняется следующим образом.

Когда утеплитель смонтирован до монтажа гидроизоляционного слоя и кровельного покрытия – самый рискованный, но и самый популярный порядок монтажа в России.

Рискованный, потому что в один день смонтировать утеплитель и накрыть его гидроизоляцией не всегда возможно, а если погода испортится и пройдет дождь, то намокнут и стропила, и теплоизоляция, что является недопустимым при утеплении крыши, теплоизоляция должна быть сухой. Но и при утеплении уже закрытого контура зачастую допускают ошибки. На форуме примерно поровну вопросов «Что делать?», задаваемых после монтажа кровельного покрытия.

Нужна помощь. Имеем загородный дом с 2-х скатной крышей (мансарда). На крыше (снаружи – внутрь): металлический профлист, рубероид, обрешетка, стропила. То, что по уму надо разбирать и делать контробрешетку, оно понятно, но дом не для ПМЖ, а скорее, дача выходного дня (весна, лето, осень) и пару раз зимой, поэтому хочется минимизировать затраты. Нужен совет – что можно сделать, чтобы крыша не гнила.

На сегодня вижу 2 варианта:

  • по углам стропил с обрешеткой набить рейки 50 мм и натянуть мембрану, дальше утеплитель;
  • натянуть мембрану изнутри по стропилам (оставив толщину стропил как вентзазор), а поверх каким-то образом крепить утеплитель.

Между стропил смонтировать бруски для создания вентилируемого зазора, затем смонтировать гидроветрозащитную мембрану змейкой, в свободное пространство уложить утеплитель. Поверх всей конструкции сделать обрешетку с пароизоляцией и финальное покрытие.

Коллеги возник вопрос, хочу сделать мансарду, перекрытие и стропила брус 50×200 мм, сделана обрешетка и времянка рубероид, хочу покрыть металлочерепицей, и утеплить. Как правильно утеплить и сделать по уму?

  1. – металлочерепица;
  2. – обрешетка;
  3. – контробрешетка;
  4. – уплотнительная лента;
  5. – гидро-ветрозащитная мембрана;
  6. – самоклеящаяся лента;
  7. – лаги;
  8. – утеплитель каменная вата;
  9. – пароизоляция;
  10. – самоклеящаяся лента;
  11. – обрешетка;
  12. – финишное покрытие.

«Классическая» технология утепления скатной крыши – в обучающем видео.

Эффективность однослойного утепления

Что касается способа укладки утеплителя, долгое время бытовало мнение, что перекрестное утепление эффективнее.

Подскажите, как быть: кровля мансардная, утепление по размеру стропил 200 мм, купил рулонный минераловатный утеплитель для кровли. Есть идея сделать еще изнутри перекрестное утепление 50 мм. Строители не одобрили. Есть ли в этом смысл. Регион Татарстан.

Утеплять в один слой лучше, чем в несколько. Повышение скорости работ за счет снижения количества технологических операций, снижение отходов из-за подрезки слоев при выполнении разбежки.

В климатической камере НИИМосстрой были проведены испытания шести фрагментов стен с плитами каменной ваты:

  • В три слоя и в один слой – плиты стыкуются без зазора (хороший монтаж).
  • В три слоя и в один слой – плиты с зазором 2 мм (нормальный монтаж).
  • В три слоя и в один слой – зазор 5 м (все плохо – надо переделывать).

Ширина шва до 2 мм является в большинстве строительных конструкций допустимой и фигурирует в нормативах. Это связано с тем, что при климатических условиях конвекция при шве такой ширины не является интенсивной. Поэтому он и не фиксируется тепловизором как мостик холода. Ранее были исследования по однородности двухслойного и однослойного утепления при соблюдении ширины шва.

В ходе исследований выявили следующее:

  • Однослойное и многослойное утепление, применяемое в наружных ограждающих конструкциях, равнозначны по своей эффективности.
  • Зазор между соседними плитами утеплителя величиной 2 мм практически не влияет на сопротивление теплопередаче.

Преимущества минимизации слоев теплоизоляции (2х100 мм и 1х150 мм лучше, чем 4х50 мм и 3х50 мм):

  • снижение трудозатрат при подготовке и монтаже изоляции;
  • сокращение обрезков материала при работе;
  • утеплитель толщиной 100 мм и более в меньшей степени склонен к прогибам, чем толщина 50 мм, за счет чего более надежно удерживается в каркасе, что важно при монтаже на вертикальные и наклонные поверхности;
  • однослойное решение обходится в итоге дешевле, чем изоляция в два и более слоев.

Признаки «правильной» скатной крыши

Качественные материалы вкупе с соблюдением технологии утепления – гарантия длительного срока службы крыши без «плачущих» в мансарде стен, плесени и грибка. Правильно утепленная скатная крыша, это комфортный микроклимат в мансарде без необходимости зимой повышать мощность котла, а летом – кондиционера. Технически убедиться в эффективности утепления крыши можно при обследовании тепловизором. Прибор покажет отсутствие либо наличие зон, через которые владельцы «топят» улицу. Но и без оборудования в зимнее время главный признак допущенных ошибок можно увидеть невооруженным глазом – «гирлянды» сосулек. На крыше, где утепление выполнено правильно, снег лежит равномерной массой, не подтаивая и сосулькам взяться неоткуда.

Вывод

Чтобы скатная крыша выполняла свое предназначение и надежно защищала дом не только от воздействий снаружи, но и от повышенных эксплуатационных затрат из-за теплопотерь, она должна быть качественно утеплена. В этом случае жить в мансарде будет максимально комфортно без переплат, а необходимость в капитальном ремонте возникнет очень и очень нескоро.

Про однослойное утепление – в предыдущем материале. Владельцам деревянных домов будет полезна статья про утепление каменной ватой дома из бруса. В видео – как правильно выбрать и уложить каменную вату.

Утеплитель для крыши мансарды: какой лучше, отзывы

Утеплитель для мансардной крыши любого вида не подойдет. Материал подбирают с учетом конструкции кровли. Вдобавок мансарда бывает жилая и нежилая. В первом случае к теплоизоляции предъявляют еще более строгие требования. Существуют виды утеплителя, требующие и не требующие дополнительной защиты от влаги. Чтобы правильно выбрать материал, хорошо утеплить крышу, нужно знать его свойства.

  1. Требования к утеплителям для крыши мансарды
  2. Толщина утеплителя в мансардной крыше
  3. Плотность утеплителя для кровли мансарды
  4. Каким утеплителем лучше утеплять крышу мансарды
  5. Минеральные утеплители
  6. Полимерные утеплители
  7. Натуральные утеплители
  8. Советы профессионалов
  9. Заключение
  10. Отзывы о том, какой утеплитель лучше для мансардной крыши

Требования к утеплителям для крыши мансарды

Утеплитель применяют для разных целей, поэтому и требования к нему отличаются. Использованный для определенных работ материал должен максимально полностью справляться со своей задачей. Схема крыши мансарды сложная. Здесь приходится утеплять скаты, фронтоны, потолок и пол. Каждый элемент отличается своей сложностью конструкции, и, чтобы теплоизоляция была эффективная, она должна отвечать следующим требованиям:

  1. Пожаробезопасность стоит первым требованием. Утеплитель минимум не должен поддерживать горение. Максимально, если материал вообще не горит.
  2. Хорошая звукоизоляция избавит от проникновения посторонних шумов с улицы. В первую очередь это касается ударов града и каплей дождя о кровельное покрытие.
  3. Хорошая паропроницаемость избавит от образования сырости. На верхнем этаже мансарды установиться благоприятный микроклимат.
  4. Устойчивость к влаге важна, так как крыша мансарды подвергается воздействию дождя и снега.
  5. Экологическая чистота утеплителя обеспечивает безопасное проживание людей.

Сложная схема мансарды требует утепления пола, скатов, фронтона и потолка

С учетом перечисленных требований для мансардной крыши лучшим утеплителем считается тот, который по максимуму удерживает тепло. Ведь ради этих целей его применяют. Так как на мансарде приходится теплоизолировать скаты крыши, пол, потолок, фронтоны, то возникает вопрос: можно ли для всех участков использовать один материал. На самом деле, действительно существует такой утеплитель с маркировкой «Универсал». Если это обозначение имеется на упаковке, то теплоизоляция подойдет для любых узлов крыши.

Толщина утеплителя в мансардной крыше

Теплоизоляция продается разной толщины неспроста. От этого параметра зависит, насколько хорошо материал справится со своими обязанностями. Наугад накладывать утеплитель нельзя. При недостатке толщины крыша промерзнет, а лишние слои приведут к бесполезным расходам.

Каждый вид утеплителя отличается коэффициентом теплопроводности

Существует такой показатель, как коэффициент теплопроводности: λБ – Вт/(м*°С). У каждого утеплителя свое значение. На крыше мансарды обычно укладывают минвату или стекловату. Важно учесть, что с увеличением толщины увеличивается и коэффициент теплопроводности. Пример параметра отображен в таблице:

Однако существует еще один фактор, влияющий на выбор толщины – климат региона. Чтобы подобрать для крыши подходящий материал, нужно рассчитать сопротивление теплопередачи кровли (R – м 2*0 С/Вт). Точные расчеты способны провести только специалисты. Обычному застройщику данные можно взять из таблицы, где приведены крупные города разных регионов.

Зная сопротивление теплопередачи кровли и коэффициент теплопроводности утеплителя, вычисляют его толщину для крыши мансарды по формуле: R* λБ

Плотность утеплителя для кровли мансарды

Не менее важным параметром теплоизоляции является ее плотность. Если взять мансарду, то здесь есть участки подверженные и не подверженные большой механической нагрузке. К первой группе относится пол. Если верхний этаж мансарды жилой, то здесь ставят мебель, бытовые приборы, прохаживаются люди. Утеплитель нужен высокой плотности.

Минимальная плотность теплоизоляции для мансарды – 35 кг/м3

Ко второй группе относятся скаты крыши и другие элементы конструкции. Механическая нагрузка здесь на утеплитель небольшая, но нужно еще учесть угол наклона. Для скатных кровель принято использовать теплоизоляцию плотностью от 25 до 45 кг/м 3 . Именно для крыши мансарды это значение должно быть выше 35 кг/м 3 .

Каким утеплителем лучше утеплять крышу мансарды

Самым распространенным материалом для крыши является минвата и стекловата, но существуют и другие утеплители. Иногда их целесообразно использовать. Выбор материала зависит от того, на каком этапе утепляют крышу, тип стропильной системы, кровельного покрытия и другие нюансы.

Минеральные утеплители

Открывают рейтинг утеплителей для крыши мансарды минеральные материалы. Внешне они напоминают вату. Форма выпуска – рулоны или плиты.

Стекловата в своем составе не имеет органики

Бюджетной считается стекловата. Материал состоит из стеклянных волокон, хорошо держит тепло, но боится сырости. Вторым недостатком является быстрое слеживание. Если отделка крыши негерметичная, волокна способны проникать внутрь мансарды, вызывая аллергические реакции. Однако есть и плюсы. Стекловата не горит. В колючей субстанции грызуны не заводятся.

Популярными марками минеральной ваты является Изовер и Ursa

Минеральная вата является аналогом стекловаты, только стеклянных волокон здесь небольшой процент. В утеплителе преобладают синтетические волокна и другие добавки. Многослойная структура хорошо задерживает тепло, но пропускает кислород, что особо важно для мансарды. Крыша получается теплая и «дышащая». Грызуны аналогично не любят строить здесь свои норы. Минвата устойчива к открытому огню, но так же слеживается, боится влаги. Самыми известными производителями являются Изовер и Ursa. Минвата имеет особые воздушные линзы, за счет которых увеличиваются звукоизоляционные свойства.

Базальтовый утеплитель состоит из волокон натурального камня

Базальтовая вата не имеет свойства колоться, вызывать раздражение тела, аллергические реакции. Утеплитель создан из волокон натурального камня, получаемых методом его расплавления. Материал устойчив к открытому огню, пропускает кислород, нетоксичен. Из-за отсутствия колющихся волокон в базальтовых плитах любят поселяться грызуны, но вероятность появления их на крыше мансарды – нулевая.

Полимерные утеплители

Встречаются крыши мансарды, построенные с допущением ошибок. Одной из них является отсутствие гидроизоляции под кровельным покрытием. Использовать вату здесь нельзя. Даже наличие металлической кровли тоже создает проблемы из-за свойственности повышенного образования конденсата. При таких условиях утеплять мансардную крышу частного дома оптимально полимерными материалами. Теплоизоляция полностью устойчива к влаге, не требует пароизоляции, но имеет один минус. Полимеры не пропускают воздух. Крыша мансарды утрачивает свойство «дышать». Применение любых полимерных утеплителей требует обустройства на мансарде вентиляции.

Пенополиуретан наносят методом напыления

Вспененный полиуретан обладает всеми параметрами идеального утеплителя. Пену наносят под давлением специальным оборудованием. Жидкая субстанция заполняет все пустоты, прочно прилипает к кровельному материалу крыши. Под пенополиуретаном не образуется конденсат и плесень. Отсутствует вероятность образования на крыше мостиков холода. Недостатком является высокая стоимость работ, необходимость найма специалистов с оборудованием. При ремонте крыши застывшую пену придется только обдирать.

Пенополистирол и пенопласт укладывают на ровные участки без изгибов

Плиты пенополистирола и пенопласта сложно уложить, если у мансарды ломаная стропильная система. Материал негибкий. Что касается пенопласта, то его для мансарды редко используют. Утеплитель горит, выделяя при этом едкий дым. Пенопласт крошится, имеет слабую устойчивость к механическим нагрузкам. Пенопластовые плиты подойдут для утепления фронтона мансарды при использовании метода «мокрый фасад». Утеплитель прячут под несколькими слоями штукатурки, которая защищает его от разрушения и возгорания.

На скаты крыши, пол, потолок мансарды лучше уложить пенополистирол. Плиты отличаются повышенной прочностью, устойчивы к влаге. Отпадает необходимость прокладки гидроизоляционной и пароизоляционной мембраны. Пенополистирол менее пожароопасен, но все же боится огня.

Натуральные утеплители

К группе относятся теплоизоляционные материалы, в основе которых использованы натуральные волокна. Для повышения эксплуатационных характеристик добавлены антисептики. В эковату дополнительно вносят антипирены. Вещества снижают горючесть натурального волокна. Плюсом утеплителя является экологическая чистота. Во всем остальном он проигрывает искусственным материалам. Натуральное сырье любят грызуны, оно впитывает влагу, правда, после высыхания восстанавливает свои свойства.

Шерстяной войлок по коэффициенту утепления не уступает базальтовой вате

Шерстяные утеплители больше встречаются в виде войлочных плит. На Кавказе используют для крыш чистую шерсть, укладывая ее в мешках внутрь кровельного пирога. В обеих вариантах материал требует надежной паро- и гидроизоляции. В шерсти заводятся насекомые, грызуны. Для мансарды войлочные плиты оптимально использовать при обустройстве пола. На скаты крыши шерсть лучше не укладывать.

Эковату наносят специальным оборудованием

Экологически чистым материалом считается эковата. Ее изготавливают из отходов бумажной продукции. Добавки улучшают эксплуатационные характеристики. Эковата подойдет для утепления крыши, но придется нанимать специализированную бригаду с оборудованием. Большие расходы не придают популярности натуральному материалу.

Советы профессионалов

Плиты пенополистирола оптимально укладывать, когда крыша еще находится на этапе строительства. Если мансарда уже построена, используют минеральные материалы. С внутренней стороны создают обрешетку. Минвату укладывают между стропильными ногами, сверху закрывают облицовкой.

Кровельный пирог, где утеплителем использован любой тип минваты, включает защитные мембраны от влаги

Использование любой ваты требует обустройство паро- и гидроизоляции. Мембраны защищают теплоизоляцию от влаги. Состоит кровельный пирог из следующих слоев:

  • со стороны кровельного покрытия крыши первой идет гидроизоляция;
  • вторым слоем укладывают теплоизоляцию;
  • третий слой – пароизоляция;
  • для образования вентиляционного зазора и крепления внутренней облицовки из реек собирают обрешетку;
  • последний слой – финишная отделка.

Вентиляционный зазор оставляют минимум 3 см. Финишной отделкой используют любые понравившиеся материалы: вагонка, фанера, древесностружечные плиты.

Заключение

Утеплитель для мансардной крыши желательно подобрать со специалистами, если верхний этаж зимой будет использован под жилое помещение. Здесь важно предусмотреть все нюансы. Допущенные ошибки приведут к образованию сырости. В таких условиях невозможно жить. Вдобавок деревянные элементы крыши быстро придут в негодность.

Читайте также:  Чем отстирать чернила от ручки с одежды: способы борьбы с пятнами от пасты на белой и цветной одежде
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: